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Abstract

We develop a general-equilibrium model of inventories with explicit microfoundations by

embedding the production-cost�smoothing motive (e.g., Eichenbaum, 1989) into a DSGE model

with imperfect competition. We show that monopolistic �rms facing idiosyncratic cost shocks

have incentives to bunch production and smooth sales by carrying inventories. The model is

broadly consistent with key stylized facts of aggregate inventory �uctuations, such as the pro-

cyclical inventory investment and the countercyclical inventory-to-sales ratio. In addition, the

model yields novel predictions for the role of inventories in macroeconomic stability: Inventories

may greatly amplify and propagate the business cycle, provided that markups or the variance of

idiosyncratic cost shocks are su¢ ciently large. That is, a strong incentive to accumulate inven-

tories under the cost-smoothing motive at the �rm level may give rise to hump-shaped aggregate

output dynamics and signi�cantly higher volatility of GDP. Such predictions are in contrast to

the implications of the recent general-equilibrium inventory literature, which shows that inven-

tory investment induced by more conventional mechanisms (e.g., the stockout-avoidance motive

and the (S,s) rule) does not increase the variance of aggregate output.
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1 Introduction

"Relative to its importance in business �uctuations, inventory investment must be the most under-

researched aspect of macroeconomic activity" (Blinder, 1981, p.444). Blinder�s assessment probably

remains true today despite his and others�best e¤orts in developing a well-established and empiri-

cally validated theory of inventories over the past quarter century.1 The general-equilibrium inven-

tory literature with rigorous microfoundations is sparse,2 although the empirical evidence continues

to remind us of Blinder�s (1990) famous claim that "business cycles are, to a surprisingly large de-

gree, inventory cycles."3 In particular, the "Great Moderation" of the U.S. economy since the 1980s

appears to be paralleled by a signi�cant reduction in inventory volatility and inventory-to-sales ratio

(especially for durable goods), which has led some (e.g., Kahn, McConnell, and Perez-Quiros, 2002)

to argue that reduced inventories due to improved inventory-management technologies explain the

reduced volatility in gross domestic product (GDP).4

Overwhelming empirical evidence indicates that the variance of production is larger than that

of sales and inventory investment is procyclical in a variety of sectors and subsectors and in the

entire economy. Because of this, conventional wisdom views inventories as a destabilizing force to

the economy and key to understanding the business cycle.5

However, the conventional wisdom is based on a partial-equilibrium logic: Given sales, procycli-

cal inventory investment implies a higher variance of production; hence, output is more variable

than it would be if inventories did not exist or were not procyclical. Such an argument ignores the

possible general-equilibrium e¤ects of inventories on sales through prices. Indeed, a recent general-

equilibrium inventory literature challenges Blinder�s view that inventories are key to understanding

economic �uctuations. Khan and Thomas (KT) (2007a) and Wen (2008) develop dynamic sto-

chastic general-equilibrium (DSGE) models in which inventories are rigorously introduced through

�rms�optimization behavior via either the (S,s) policy or the stockout-avoidance motive and show

that procyclical inventory investment does not increase the volatility of output.6 This is so be-

1An incomplete list of important early works includes Blanchard (1983), Blinder (1981, 1986a, 1986b), Blinder
and Maccini (1991), Eichenbaum (1989), Kahn (1987), Ramey (1991), West (1986), and many others.

2Exceptions include Fisher and Hornstein (2000), Khan and Thomas (2007a, 2007b), Kryvtsov and Midrigany
(2008), and Wen (2008).

3 Inventory investment accounts for less than 1% of GDP, but its movement accounts for more than 60% of the
variations in GDP (see, e.g., Blinder, 1981 and 1986a; and Blinder and Maccini, 1991). Using updated data, Romer
(2001, p170, Table 4.2) shows that declines in inventory investment still account for more than 40% of the drop in
GDP for post-war U.S. recessions.

4This view is controversial. See Kahn (2008), Irvinea and Schuh (2005a, 2005b), Iacoviello, Schiantarelli, and
Schuh (2007), and Ramey and Vine (2006), among others for more recent empirical studies on this issue.

5See the previously cited literature in footnote 1 for reference.
6 In particular, Wen (2008) shows that inventories reduce the variance of GDP.
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cause in general equilibrium inventories may stabilize sales as much as (or even more than) they

destabilize production. For example, in the model of KT (2007a), a rise in the incentive for or-

dering intermediate goods and accumulating input inventories diverts productive resources (such

as labor) away from the �nal-goods sector to intermediate-goods production, thereby dampening

the rise in �nal sales. In Wen�s (2008) model, the asset price of inventories is procyclical because

of an endogenously determined probability of inventory stockout; hence, it attenuates the increase

of sales in booms and mitigates the decrease of demand in recessions. Consequently, these papers

show that eliminating inventories from the economy does not necessarily decrease the variance of

GDP, contradicting the conventional wisdom that business cycles are driven largely by inventory

�uctuations.

Although the general-equilibrium analyses of KT (2007a) and Wen (2008) are provocative, there

exist other theoretical possibilities linking inventories to output volatility and alternative motives

inducing �rms to hold inventories. For example, �rms may use inventories to smooth sales when

production costs are uncertain. That is, pro�t-maximizing �rms (facing cost shocks) may opt to

"bunch" production by producing more than sales and carry the excess supply as inventories when

costs are low, and use inventories to meet demand when costs are high. This is the production-cost�

smoothing motive emphasized by Eichenbaum (1989). Empirical studies by Eichenbaum (1989)

and others show that cost shocks are indeed important in explaining inventory �uctuations at the

industry level.7

This paper provides a microfounded general-equilibrium model of inventories based on the cost-

smoothing motive. A fundamental challenge for building a general-equilibrium inventory model

with the production-cost�smoothing motive is that the rate of return to inventory investment

is negative and dominated by that of capital accumulation. Kydland and Prescott (1982) have

bypassed this di¢ culty by assuming inventory as a factor of production.8 This paper confronts this

problem directly by introducing three key frictions into an otherwise standard real-business-cycle

(RBC) model: (i) imperfect competition, (ii) heterogeneous productivity across �rms, and (iii)

borrowing constraints. The �rst two frictions imply that a �rm�s pro�t function is strictly concave

in sales and marginal costs are idiosyncratic; consequently, inventories can emerge as an optimal

device to smooth sales and production costs.9 The third friction avoids in�nite inventory holdings

for low-cost �rms under constant returns to scale technology. With these frictions, there exists a

7Costs shocks as a distinct source of uncertainty driving inventory behavior are also emphasized by Blanchard
(1983), Eichenbaum (1984, 1989), Durlauf and Maccini (1995), Ramey (1989), and West (1986), among others. Also
see the references in Eichenbaum (1989). However, this literature does not provide an explicit microtheory to explain
the existence of inventories. For example, in this literature the existence of an optimal target inventory level is
assumed, rather than derived from �rms�cost-minimization problems.

8 In fact, proving the existence of inventories in a frictionless general-equilibrium model is as di¢ cult as proving
the existence of money.

9 Inventories do not exist in a representative-agent model even if the pro�t function is concave in sales.
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well-de�ned distribution of inventory stocks across �rms in equilibrium.10

In contrast to the partial-equilibrium inventory literature, the optimal inventory target of a �rm

and the associated stock-adjustment equation are derived explicitly from �rms�cost-minimization

problems. We show that the general-equilibrium model can explain the key stylized facts of ag-

gregate inventory behavior, such as the procyclical inventory investment and the countercyclical

inventory-to-sales ratio. However, in contrast to KT (2007a) and Wen (2008), which are based

either on the (S,s) inventory strategy or the stockout-avoidance policy, our model predicts that

procyclical inventory investment may signi�cantly amplify the volatility of aggregate output. More

importantly, it may also help propagate aggregate shocks by generating hump-shaped output dy-

namics, suggesting that inventory investment may indeed play a key role in the business cycle. This

potential role of inventories in propagating the business cycle was �rst studied by Metzler (1941)

but has not been emphasized in the recent theoretical literature.

The intuition behind our results is as follows. The incentives for �rms to bunch production

and use inventories to smooth sales under idiosyncratic cost shocks imply procyclical inventory

investment and more variable production than sales at the �rm level. However, the ratio of aggre-

gate inventory stock to sales is countercyclical despite procyclical inventory investment, because a

general-equilibrium trade-o¤ between inventories and capital prevents aggregate inventories from

rising sharply in the initial periods of a boom: Under a positive aggregate productivity shock, the

returns to capital are high, so the demand for capital outweighs the demand for inventories initially.

This causes more �rms to stockout to meet the rise in �nal-goods demand so as to economize on the

high interest costs of holding inventories. Hence, aggregate inventories do not increase one-for-one

with sales in the initial periods of the shock, leading to a countercyclical inventory-to-sales ra-

tio. However, because inventories facilitate sales, inventory investment will eventually accelerate in

subsequent periods as the interest rate declines and the production capacity peaks (which relaxes

�rms� borrowing constraints). The rising inventory stock encourages more sales, which in turn

translates into more production capacity and further relaxes �rms�borrowing constraints. Such a

contemporaneous tradeo¤ but a dynamic reinforcement between capital and inventories give rise

to hump-shaped inventory investment and highly persistent aggregate demand. Thus, in contrast

to a standard RBC model without inventories, aggregate consumption smoothing in our model is

achieved not only through sharp rises in capital investment in the initial periods but also gradual

increases in inventory investment in subsequent periods. This makes sense because imperfectly

competitive �rms hold inventories to smooth sales. This gradual stock-adjustment process creates

an inventory-accelerator mechanism and helps to propagate and amplify the business cycle.

10A virtue of our approach is that it is analytically tractable with closed-form solutions for �rms�inventory decision
rules, in contrast to the (S,s) general-equilibrium inventory models (e.g., Fisher and Hornstein, 2000; and Khan and
Thomas, 2007a). Our strategy to make the model analytically tractable is inspired by the general-equilibrium
approach of Wen (2008).
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A similar stock-adjustment mechanism does not lead to more volatile and persistent aggregate

demand in the two-sector (S,s)-inventory model of KT (2007a), because in their model a positive

productivity shock to the intermediate-goods sector diverts resources from the �nal-goods sector,

which dampens the rise in �nal sales and capital accumulation. In our model, �rms are heteroge-

neous in marginal costs of production. Thus, in each period the less-e¢ cient �rms (which face high

marginal costs) do not accumulate inventories and opt to meet demand by stocking out, while only

the more-e¢ cient �rms accumulate inventories and opt to produce more than sales. Since a positive

aggregate productivity shock raises the real interest rate and thereby increases the number of �rms

that want to stockout, it strengthens �nal sales and dampens the initial rise in aggregate inven-

tory investment along the extensive margin, making inventory investment hump-shaped through

the stock-adjustment mechanism. This generates more persistence in aggregate demand, therefore

increasing the volatility of GDP.

Sales smoothing at the �rm level is a key micromechanism that renders inventories destabilizing

in our general-equilibrium model. Under sales smoothing, the conventional partial-equilibrium

argument about the destabilizing role of inventories becomes approximately valid: Given sales,

procyclical inventory investment implies a higher variance of production; hence, output is more

variable than it would be without inventories. Although this partial-equilibrium argument ignores

general-equilibrium feedbacks of inventories on sales, it nonetheless holds approximately true in our

model because sales smoothing makes sales a less-ideal bu¤er to dampen the destabilizing e¤ects

of inventories.11

While useful for understanding dynamic interactions between inventories and the business cy-

cle, the simplicity of our benchmark model limits its quantitative �t in several respects. First,

it understates the volatility of inventory investment. Second, it can match the observed average

inventory-to-sales ratio only if the implied markup is at least 20% or higher, or if �rms are not

(severely) borrowing constrained. Third, when the parameters are calibrated to generate hump-

shaped dynamics in aggregate employment and output, the benchmark model signi�cantly under-

states the dispersion of prices across �rms. Although assuming alternative distributions for �rms�

idiosyncratic shocks may mitigate some of the problems, it cannot address all problems at once

and may also create new problems. Therefore, further research is still needed to �rmly establish

the Metzler-type inventory-accelerator mechanism in general equilibrium.

The rest of the paper is organized as follows. Section 2 presents the benchmark model of

heterogeneous �rms and shows how to derive closed-form decision rules for production, sales, and

inventory investment under borrowing constraints. Section 3 studies the general equilibrium of

11On the other hand, the procyclical movements of inventory-depleting �rms along the extensive margin further
amplify the destabilizing e¤ect of inventories under sales smoothing, and such movements are key to generating a
countercyclical stock-to-sales ratio and hump-shaped dynamics. If the extensive margin were constant or countercycli-
cal, inventories would still be destabilizing to GDP in the model (because of sales smoothing), but the hump-shaped
dynamics would disappear and the inventory-to-sales ratio might become procyclical.
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the model. Section 4 calibrates the model and studies its quantitative implication for aggregate

inventory dynamics and the business cycle. Section 5 extends the benchmark model along several

dimensions and investigates the robustness of the results. These extensions and robustness analyses

provide further insights into the working mechanism of the inventory model. Section 6 concludes

the paper. An analytical solution method for solving the model with persistent idiosyncratic shocks

is provided in the Appendix.

2 The Benchmark Model

This is a model of output inventories. The framework can be easily extended to input inventories.12

There are two types of goods in the economy: �nal goods and intermediate goods. The �nal goods

sector is perfectly competitive and uses a continuum of intermediate goods to produce output

according to the technology,

Zt =

�Z 1

0
yt(i)

��1
� di

� �
��1

: (1)

Given prices of intermediate goods, pt(i), the inverse demand function of intermediate good i is

given by

pt(i) = yt(i)
� 1
�Z

1
�
t ; (2)

where the �nal-good price has been normalized to 1. Each type of intermediate good i is supplied

by a monopolist �rm, which produces output according to

xt(i) = At"t(i)kt(i)
�nt(i)

1��; (3)

where "t(i) is the inverse of an idiosyncratic cost shock to �rm i, At is an aggregate total factor

productivity (TFP) shock, kt(i) is capital, and nt(i) is labor. The factor markets are competitive,

so intermediate-goods �rms take the real rental rate of capital (rt) and the real wage (wt) as given.

The factor demand functions are given by kt(i) = �
xt(i)
rt+�k

�t(i) and nt(i) = (1� �)
xt(i)
wt
�t(i); where

�t(i) denotes the marginal cost of �rm i and rt+ �k the user�s cost of capital. These factor demand

functions imply 1
At

�
rt+�k
�

�a �
wt
1��

�1��
= "t(i)�t(i). We can de�ne �t � 1

At

�
rt+�k
�

�a �
wt
1��

�1��
as

the aggregate marginal cost and it satis�es �t(i) =
�t
"t(i)

.

De�ning st(i) as the stock of inventories that �rm i decides to hold in period t, the �rm�s

program is to maximize the expected sum of future pro�ts by solving

12See Humphreys, Maccini, and Schuh (2001) for partial-equilibrium analysis of both input and output inventories.
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maxE0

1X
t=0

�t
�t
�0

�
pt(i)yt(i)�

�t
"t(i)

xt(i)

�
(4)

subject to

yt(i) + st(i) = xt(i) + (1� �s)st�1(i) (5)

st(i) � 0 (6)

pt(i)yt(i)�
�t
"t(i)

xt(i) � 0; (7)

where �t is the marginal utility of consumption of the household and �s the depreciation rate of

inventories. Equation (5) is the resource constraint, equation (6) is a nonnegativity constraint on

inventory stock, and equation (7) is a nonnegativity constraint on dividends.13

Because the revenue function, pt(i)yt(i) = yt(i)1�
1
�Z

1
�
t , is concave in sales and the cost function

is linear in production (due to constant returns to scale), �rms have incentives to smooth both sales

and production costs by accumulating inventories, which can maximize average pro�ts and reduce

average costs through intertemporal substitution of production activities. For example, when "t(i)

is large (marginal cost is low), �rm i can produce more than sales (up to the point of a zero pro�t)

and use inventories to substitute for future production when the next-period marginal cost may be

high. On the other hand, when "t(i) is small (marginal cost is high), the �rm can use inventories

to satisfy sales without raising production costs.

Denoting f�t(i); �t(i); �t(i)g as the Lagrangian multipliers of constraints (5)-(7), respectively,
the �rst-order conditions of fxt(i); yt(i); st(i)g are given by

�t
"t(i)

(1 + �t(i)) = �t(i) (8)

13A nonnegative dividend constraint is a standard assumption in the investment literature with heterogeneous
�rms and incomplete markets (see, e.g., Browna and Haeglerb, 2004; and Miao, 2005). Gertler and Gilchrist (1994)
document empirically that small �rms are more likely to be borrowing constrained than large �rms, and they play
a surprisingly prominent role in the �uctuations of aggregate inventory demand over the business cycle. Borrowing
constraints are needed in our model because the linear cost function may induce a low-cost �rm to produce in�nite
output and hold in�nite inventories by paying in�nitely negative dividends to households. Hence, the �rm�s opti-
mization problem is not well de�ned unless we impose a borrowing limit to rule out in�nitely negative dividends.
However, this assumption alone does not lead to a countercyclical aggregate inventory-to-sales ratio under aggregate
shocks for two reasons: (i) Idiosyncratic cost shocks are the main reason for �rms to hold inventories in our model,
so borrowing constraints determine only the average inventory-to-sales ratio across �rms but not the dynamic re-
sponses of this ratio to aggregate shocks. The dynamics of the aggregate inventory-to-sales ratio are critically a¤ected
by shifts in the distribution of �rms along the extensive margin (i.e., changes in the number of inventory-holding
�rms). (ii) For this reason, allowing for negative pro�ts can increase the steady-state inventory level more than it
can increase steady-state sales; consequently, the volatility of inventory stock relative to that of sales under aggregate
shocks may be reduced and the aggregate stock-to-sales ratio may become even more (instead of less) countercyclical
with negative dividends. Hence, the nonnegative dividend assumption does not play exactly the same role as the
assumption of increasing marginal costs in Bils and Kahn (2000), although it is consistent with increasing marginal
costs at the �rm level. Other types of constraints to prevent in�nitely negative dividends (such as decreasing returns
to scale production technology and adjustment costs in inventory investment) are possible but are not as tractable.
See the robustness analysis on relaxing this assumption in Section 5.
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�
� � 1
�

�
yt(i)

� 1
�Z

1
�
t (1 + �t(i)) = �t(i) (9)

�t(i) = �(1� �s)Et
�t+1
�t

�t+1(i) + �t(i): (10)

Equations (8) and (9) imply yt(i) =
�
��1
�

��
Zt

�
"t(i)
�t

��
; which determines the optimal amount of

sales. Consequently, the monopoly price is a markup over the marginal cost,

pt(i) =
�

� � 1
�t
"t(i)

: (11)

Notice that, in the absence of idiosyncratic uncertainty, the incentives to hold inventories are

diminished because equation (10) implies �t = �t � �(1 � �s)Et�t+1�t
�t+1, which is greater than 0

in the steady state. That is, aggregate shocks do not induce inventory investment near the steady

state. This is why Kydland and Prescott (1982) assume inventory as a factor of production in their

representative-agent model.

The decision rules for inventories are characterized by a cuto¤ strategy. Consider two possibil-

ities as follows:

Case A. "t(i) � "�t . In this case, the marginal cost of production is low. Suppose st(i) > 0, then

�t(i) = 0. In such a case, equation (10) implies �t(i) = �(1 � �s)Et�t+1�t
�t+1(i), and equation (8)

implies

�t
"t(i)

� �(1� �s)Et
�t+1
�t

�t+1(i); (12)

because �t(i) � 0. This implies "t(i) � �t

�(1��s)Et
�t+1
�t

�t+1(i)
� "�t , which de�nes the cuto¤ value "�t

and the relationship

�(1� �s)Et
�t+1
�t

�t+1(i) �
�t
"�t
: (13)

Notice that the cuto¤ is independent of i under the assumption of i:i:d idiosyncratic shocks. Equa-

tion (8) then further implies 1 + �t(i) =
"t(i)
"�t
. Hence, we conclude that �t(i) > 0 if "t(i) > "�t .

In such a case, the nonnegative pro�t constraint binds, pt(i)yt(i) = �t
"t(i)

xt(i), which together with

equation (11) implies

xt(i) =
�

� � 1yt(i) > yt(i); (14)

suggesting that inventory investment is strictly positive. That is, in the case of a large enough

idiosyncratic productivity shock (or small enough cost shock), the �rm produces more than sales

and opts to hold the excess supply as inventories.
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Case B. "t(i) < "�t . In this case, the marginal cost of production is high. Suppose pt(i)yt(i) >

�t
"t(i)

x(i), then �t(i) = 0. Then equations (8) and (13) imply
�t
"t(i)

= �t(i) =
�t
"�t
+�t(i), which implies

�t(i) =
�t
"t(i)

� �t
"�t
> 0. Hence, we have st(i) = 0. In such a case, the �rm opts to stockout and the

resource identity implies xt(i) = yt(i)� (1� �s)st�1(i): That is, in the case of a high marginal cost,
the �rm cuts back production and uses existing inventories to satisfy sales.

The decision rules of the �rm can thus be summarized by the following policy functions:

yt(i) =

�
� � 1
�

��
Zt

�
"t(i)

�t

��
(15)

xt(i) =

8<:
�
��1yt(i) if "t(i) � "�t

yt(i)� (1� �s)st�1(i) if "t(i) < "�t

(16)

st(i) =

8<:
1
��1yt(i) + (1� �s)st�1(i) if "t(i) � "�t

0 if "t(i) < "�t

: (17)

Since the shadow value of inventory satis�es

�t(i) =

8><>:
�t
"�t

if "t(i) � "�t

�t
"t(i)

if "t(i) < "�t

; (18)

equation (13) becomes

�t
"�t
= �(1� �s)Et

�t+1
�t

"Z
"t+1<"�t+1

�t+1
"t+1

dF (") +

Z
"t+1�"�t+1

�t+1
"�t+1

dF (")

#
; (19)

which determines the endogenous cuto¤ value "�t and, consequently, the optimal target inventory

level in the model.14 The left-hand side of equation (19) is the shadow value (opportunity cost) of

holding inventory when the �rm�s productivity is high. The right-hand side is the expected rates

of return by carrying one unit of inventory to the next period. In the case of low productivity

("t+1 < "�t+1), the �rm opts to stockout (st+1(i) = 0) by keeping production low and the shadow

value of inventory is �t+1
"t+1(i)

. In the case of high productivity ("t+1 � "�t+1), the �rm opts to

carry the inventory forward and the shadow value is again �t+1
"�t+1

. Since the probability of stockout

14The probability of stockout in the model is given by F ("�t ). Firms choose a target inventory and level of sales to
determine the optimal probability of stockout under cost shocks.
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is determined by the cuto¤ value "�t , the �rm chooses "�t so that the marginal cost of holding

inventory in period t equals the expected next-period marginal gains. In other words, equation

(19) is the Euler equation for determining the inventory target by dynamic programming.

This Euler equation has an important implication: The cuto¤ "�t is procyclical. Under a positive

aggregate productivity shock, the cuto¤ "�t increases because the real interest rate rises, suggesting

that more �rms choose to stockout to meet demand. This promotes �nal sales (i.e., consumption

growth and capital accumulation) and reduces aggregate inventory investment along the extensive

margin (i.e., the number of �rms under Case B increases), resulting in a countercyclical aggregate

inventory-to-sales ratio. This re�ects a contemporaneous general-equilibrium trade-o¤ but dynamic

positive feedback between inventory investment and capital accumulation: Inventories facilitate

sales, but producing inventories requires capital. Hence, after a positive aggregate productivity

shock, it is optimal to expand production capacity by accumulating capital �rst and gradually

build up inventory stock over time to meet �nal demand (sales).

The decision rule for production (equation (16)) states that production is larger than sales when

the cost of production is below the cuto¤ value ("t(i) � "�t ), and it is less than sales when cost

is high ("t(i) < "�t ). Such a decision rule con�rms our earlier intuition that �rms opt to bunch

production and use inventories to smooth sales and maximize the average pro�ts.

The decision rule for inventory accumulation (equation (17)) states that inventory investment,

st(i) � (1 � �s)st�1(i), is procyclical with sales when "t(i) � "�t ,
15 suggesting that average (or

aggregate) inventory investment is procyclical and production is more volatile than sales. This is

consistent with the stylized empirical fact. However, despite the procyclical inventory investment,

the aggregate inventory stock-to-sales ratio in the model is countercyclical. That is, a 1% increase in

aggregate sales corresponds to less than a 1% increase in aggregate inventory stock. This is mainly

the consequence of the contemporaneous general-equilibrium trade-o¤between capital accumulation

and inventory investment, which makes the number of �rms willing to accumulate inventories

countercyclical under a procyclical real interest rate, thus dampening the initial rise in aggregate

inventory investment on the extensive margin.

Bils and Kahn (2000) argue that the countercyclical inventory-to-sales ratio implies procycli-

cal marginal costs and countercyclical markup. According to this argument, �rms opt to increase

inventories by less than sales in a boom because the marginal cost of production is procyclical.

In our model, the aggregate marginal cost (�) is constant (to be shown shortly); yet, the model

predicts a countercyclical aggregate inventory-to-sales ratio and procyclical inventory investment.

This is not inconsistent with the argument of Bils and Kahn (2000) because the nonnegativity

constraint on pro�ts, equation (7), e¤ectively imposes an upper bound on the capacity of �rm-level

15On the other hand, its contemporaneous correlation with sales is zero when " < "�.
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production beyond which the marginal cost of �rm-level production can be interpreted as in�n-

ity. However, this nonnegative-pro�t constraint alone does not lead to a countercyclical aggregate

inventory-to-sales ratio in our model, because this constraint mainly a¤ects the average steady-

state inventory-to-sales ratio across �rms and does not determine the dynamic responses of this

ratio to aggregate TFP shocks. In fact, allowing negative pro�ts may increase the steady-state

inventory level more than it can increase steady-state sales; consequently, the percentage change

(volatility) of aggregate inventory stock around its steady state relative to that of aggregate sales

may be reduced (instead of increased), so the aggregate stock-to-sales ratio may become even more

(instead of less) countercyclical.16

3 General Equilibrium

3.1 Aggregation

By the law of large numbers, the �nal output equation, Zt =
hR
yt(i)

��1
� di

i �
��1
, implies that the

marginal cost is constant,

� =

�
� � 1
�

��Z
"��1dF (")

� 1
��1

; (20)

where F (") denotes the cumulative distribution function of the random variable ". De�ne Y �R 1
0 y(i)di; K �

R 1
0 k(i)di; N �

R 1
0 n(i)di; X �

R 1
0 x(i)di, and S �

R 1
0 s(i). Based on these de�nitions,

the level of aggregate sales is given by

Yt = PZt; (21)

where the constant P �
�R
"(i)�dF (")

� �R
"(i)��1dF (")

� �
1�� can be interpreted as an aggregate

measure of the relative price of the �nal good in terms of intermediate goods. Note P = 1 if

"(i) is constant across �rms. Using the �rm-level production decision rules, the level of aggregate

production is given by

Xt = Yt

hR
"<"�t

"�dF (") + �
��1

R
"�"�t

"�dF (")
i

R
"�dF (")

� (1� �s)St�1F ("�t ); (22)

16See the robustness analysis in Section 5. Because �rms are heterogeneous in our model, the e¤ects of aggregate
shocks and those of idiosyncratic shocks on inventory dynamics are di¤erent. In particular, idiosyncratic shocks
a¤ect only the average stock-to-sales ratio in the steady state, but not the dynamics of this ratio o¤ the steady
state. Such an important distinction does not exist in the representative-agent model of Bils and Kahn (2000). The
key in generating a countercyclical aggregate stock-to-sales ratio in our model is the general-equilibrium trade-o¤
between inventory investment and capital accumulation, which promotes �nal sales and reduces aggregate inventory
investment along the extensive margin after aggregate productivity shocks.
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and the aggregate stock of inventories is given by

St =
1

� � 1

R
"�"�t

"�dF (")R
"�dF (")

Yt + (1� �s)St�1 [1� F ("�t )] : (23)

Equation (23) resembles the familiar stock-adjustment model of inventories widely used in the

empirical literature (see, e.g., Blinder 1986b). However, the crucial di¤erence here is that the

speed of adjustment in our model is time varying and depends in general equilibrium on other

aggregate variables through the optimal cuto¤ "�t .
17 According to this stock-adjustment equation,

the optimal inventory stock is a weighted cumulative sum of current and past sales with the weights

depending negatively on the time-varying cuto¤ "�t ; hence, it is smoother than sales (since the

cuto¤ is procyclical) and implies a countercyclical aggregate stock-to-sales ratio. Such a prediction

is consistent with the empirical fact emphasized by Bils and Kahn (2000).18

It is easy to check that these aggregate relations (22) and (23) satisfy the aggregate resource

identity,

Yt + St = (1� �s)St�1 +Xt: (24)

The factor demand functions imply (rt + �k)Kt = ��Mt and wtNt = (1� �) �Mt, where Mt is

de�ned as

Mt �
Z 1

0

xt(i)

"t(i)
di: (25)

Since � � 1
At

�
rt+�k
�

�� �
wt
1��

�1��
, these aggregate factor demand functions imply the aggregate

production function,

Mt = AtK
�
t N

1��
t : (26)

Using the de�nition of Mt and the �rm-level production decision rule, we also have

Mt = Yt

hR
"<"�t

"��1dF (") + �
��1

R
"�"�t

"��1dF (")
i

R
"�dF (")

� (1� �s)St�1
Z
"<"�t

"�1dF ("): (27)

Notice that when "t(i) is constant across �rms, we have Mt =
Xt
" by comparing equations (27) and

(22).

17Schuh (1996) shows that accounting for time variation in the inventory adjustment speed improves the �t of a
traditional inventory model.
18A similar stock-adjustment equation also arises in the models of KT (2007a) and Wen (2008). Although borrowing

constraints play an indirect role in giving rise to the stock-adjustment equation in our model, they are not the key for
generating a countercyclical aggregate inventory-to-sales ratio. In fact, it is the procyclical movements in the cuto¤
that hold the key for the countercyclical stock-to-sales ratio in our model. However, borrowing constraints do play an
indirect role in supporting the inventory-accelerator mechanism in our model because the general-equilibrium trade-
o¤ between capital and inventories would break down if �rms could produce in�nite output by borrowing in�nite
amount of capital from households. See Section 5 for the robustness analysis on relaxing borrowing constraints.
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3.2 Household

To close the model, we add a representative household. The household�s role is to supply labor and

accumulate capital. The household derives utility from consumption (Ct) and disutility of working

(Nt) by solving

maxE0

1X
t=0

�t

 
logCt � a

N1+

t

1 + 


!
(28)

subject to

Ct +Kt+1 � (1 + rt)Kt + wtNt +�t; (29)

where � denotes aggregate pro�t income distributed from �rms. Denoting �t as the Lagrangian

multiplier for the budget constraint, the �rst-order conditions for fCt; Nt;Kt+1g are given, respec-
tively, by

C�1t = �t (30)

aN

t = wt�t (31)

�t = �Et(1 + rt+1)�t+1: (32)

The aggregate pro�t income is given by

�t =

Z 1

0

�
yt(i)

1� 1
�Z

1
�
t �

�

"t(i)
xt(i)

�
di = Zt � wtNt � (rt + �k)Kt; (33)

where Zt = Yt
P is the aggregate �nal output given in equations (1) and (21). This implies that in

equilibrium the household�s budget constraint is given by

Ct +Kt+1 � (1� �k)Kt = Zt; (34)

which is also the equilibrium market-clearing condition for the �nal good.

The aggregate variables that need to be determined are fCt;Kt+1; Nt; Xt;Mt; Yt; St; "
�
t g. De�ne

the functions g1("�) �
R
"<"� "

��1dF ("); g2("�) �
R
"�"� "

��1dF ("); h("�) �
R
"�"� "

�dF ("); Q("�) �R
"<"� "

�1dF ("), and ~" �
R
"�dF ("). The system of equations that solve these variables is given by

1

"�t
= �(1� �s)Et

Ct
Ct+1

�
Q("�t+1) +

1� F ("�t+1)
"�t+1

�
(35)

Mt = Yt

h
g1("

�
t ) +

�
��1g2("

�
t )
i

~"
� (1� �s)Q("�t )St�1 (36)
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St =
1

� � 1Yt
h("�t )

~"
+ (1� �s)St�1 [1� F ("�t )] (37)

Yt + St = (1� �s)St�1 +Xt (38)

aN1+

t = (1� �) �Mt

Ct
(39)

1 = �Et

�
��
Mt+1

Kt+1
+ 1� �k

�
Ct
Ct+1

(40)

Ct +Kt+1 � (1� �k)Kt =
1

P
Yt (41)

Mt = AtK
�
t N

1��
t ; (42)

where equation (35) is the Euler equation for the optimal cuto¤ "�t , equation (36) characterizes ag-

gregate production decisions as a function of aggregate sales and existing inventory stock, equation

(37) is the equilibrium law of motion for inventory accumulation (i.e., the optimal stock adjustment

equation for inventories), equation (38) is the aggregate resource identity for �rms�output (that

relates total sales and inventory investment to production), equation (39) represents the house-

hold�s optimal labor supply, equation (40) the household�s optimal consumption, equation (41) the

household�s budget identity, and equation (42) the aggregate production function. Note equations

(38) and (41) imply the following �nal-goods resource constraint that links the �nal demand to

intermediate goods production and inventories,

Ct +Kt+1 � (1� �k)Kt +
1

P
[St � (1� �s)St�1] =

1

P
Xt; (43)

where P � Yt
Zt
is the relative price of the �nal goods. Equation (37) implies the steady-state

inventory-to-sales ratio,

S

Y
=

1

1� (1� �s) (1� F )
1

� � 1
h("�)

~"
: (44)

4 Impulse Responses

4.1 De�nition of GDP

Because of imperfect competition and inventories, GDP must be measured carefully in the model

economy. By the value-added approach, GDP in the model economy is the sum of the �nal-good

sector�s value added and the intermediate-goods sector�s value added. The �nal-good sector�s value

added is its revenue minus the costs of intermediate goods used in production, Zt�
R 1
0 pt(i)yt(i)di,

14



which is zero under perfect competition; whereas the intermediate-goods sector�s value added isR 1
0 pt(i)xt(i)di. Hence, GDPt =

R 1
0 pt(i)xt(i)di. Alternatively, by the expenditure approach, GDP

is the sum of Z (aggregate consumption plus business investment) and inventory investment (by

market values), GDPt = Zt +
R 1
0 pt(i)[st(i)� (1� �s)st�1(i)]di. Since inventory investment equals

production minus sales, by the zero-pro�t condition we have GDPt =
R 1
0 pt(i)xt(i)di. Hence, both

approaches give the same results. Substituting the relationship pt(i) = �
��1

�t
"t(i)

into GDP gives

GDPt =
�

� � 1�
Z 1

0

xt(i)
"t(i)

di =
�

� � 1�Mt; (45)

where Mt is the aggregate supply of intermediate goods de�ned in equation (26). That is, GDP is

proportional to aggregate production of intermediate goods. As the markup disappears (� !1),
we have � = 1 and GDPt =Mt.

4.2 A Benchmark Calibration

Assume "(i) is drawn from a Pareto distribution, F (") = 1�
�
1
"

��
, with the shape parameter � > 0

and the support " 2 (1;1]. We assume Pareto distribution because an extensive empirical literature
documents that many characteristics of �rms (such as �rm size, productivity, employment, sales,

R&D expenditures) follow Pareto distributions.19 Such empirical facts have motivated much of the

heterogeneous-�rm literature to assume Pareto distributions for �rms� idiosyncratic productivity

shocks (see, e.g., Helpman, Melitz, and Yeaple, 2004). However, we examine the robustness of

our results to this assumption in Section 5 where alternative distributions, such as lognormal and

uniform distributions, are considered.

The functions de�ned before equation (35) are not integrable under Pareto distribution if � � �,
so we further assume � > � to make these integrations meaningful. With this assumption, the func-

tions fg1("�); g2("�); h1("�); h2("�); q1("�); q2("�)g are given by g1("�) = �
�+1��

�
1� ("�)����1

�
,

g2("
�) = �

�+1�� ("
�)����1, h("�) = �

��� ("
�)���, q1("�) =

�
�+1

�
1� ("�)�1��

�
, and q2("�) =

�
��1"

�1��.

Similarly, we have ~" = �
��� , the relative price P =

h
�
���

i h
�

�+1��

i �
1��
, and the aggregate marginal

cost � =
�
��1
�

� h �
�+1��

i 1
��1
.

The time period is one quarter. We set � = 0:99, � = 0:35, �k = 0:035, �s = 0:005, � = 10

(implying a 10% markup), and 
 = 0 (indivisible labor).20 We set a in the utility function to imply

19See, e.g., Axtell (2001) and Luttmer (2007) and the references therein.
20Our main results do not hinge on this particular assumption of the labor supply function.
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steady-state hours worked �N = 0:24 (i.e., 40 hours per week).21 The aggregate technology shock

is assumed to follow an AR(1) process in log, Ât = �Ât�1 + �t, with persistence � = 0:9. The

standard deviation of vt is set to �v = 0:007 (Kehoe and Perri, 2002), which is consistent with

most estimations of the Solow residual based on Cobb-Douglas production function (e.g., King and

Rebelo, 1999). Accoring to King and Rebelo (1999), a value of �v = 0:007 implies that standard

RBC models are not able to explain the variations in GDP. However, our model with inventories

is able to match the variance of U.S. GDP because inventories can amplify the business cycle. In

particular, by properly choosing the value of �, which measures the variance of �rms�idiosyncratic

cost shocks and determines the strength of incentives for �rms to hold inventories, our model can

exactly match the standard deviation of GDP. For this reason, we pick � = 10:13 so that the

predicted standard deviation of GDP in the model roughly matches �gdp = 0:024 for the U.S.

economy. The key parameter values of the model are summarized in Table 1.

Table 1. Parameter Values

� � �k �s 
 � � � �v
0:35 0:99 0:035 0:005 0 10 10:13 0:9 0:007

We apply the log-linearization method to study the model�s aggregate dynamics around the

steady state. The impulse responses of GDP, consumption, labor, investment, inventory investment,

and the inventory-to-sales ratio (StYt ) to a 1 standard deviation (SD) aggregate technology shock

are graphed in Figure 1 (thick solid lines). The horizontal axis represents time (i.e., the number

of quarters after the shock), and the vertical axis represents percentage changes of each variable

relative to its steady state.

Figure 1 shows that, under aggregate technology shocks, aggregate inventory investment (panel

E) is strongly procyclical and far more volatile than GDP (panel A); at the peak of the responses,

inventory investment is more than 10 times as volatile as GDP. However, the inventory stock-to-sales

ratio (panel F) is countercyclical, suggesting that the stock fails to track sales one-for-one despite

the strongly procyclical changes in inventory investment. Hence, the model is able to explain the

key stylized facts of inventory behavior emphasized by the empirical literature (e.g., Bils and Kahn,

2000). In addition, consumption (panel B) is less volatile and investment (panel C) is more volatile

than GDP, as in a standard RBC model.

21This parameter has no e¤ects on the dynamics of the model around the steady state.
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Figure 1. Impulse Responses to a 1% TFP Shock

Most notable in Figure 1 are the hump-shaped impulse responses of labor (panel D) and GDP to

a technology shock. This dynamic pattern of aggregate employment and output is a de�ning feature

of the business cycle emphasized in the literature as a litmus test for quantitative business-cycle

models (see, e.g., Cogley and Nason, 1995). The fact that our inventory model is able to generate

such hump-shaped output dynamics is striking. The general-equilibrium inventory models of KT

(2007a) and Wen (2008) do not deliver this result. However, as the variance of the idiosyncratic

shocks decreases (or the value of � increases), the hump-shaped output dynamics are weakened

rapidly. This is because as � increases, the distribution of idiosyncratic shocks becomes more and

more degenerate so the incentives for holding inventories diminish quickly. In the limit (� ! 1),
inventories completely disappear and the model is reduced to a standard Dixit-Stiglitz RBC model

without hump-shaped dynamics.

As a comparison, the thick dashed lines in Figure 1 (panels A, B, C, D) show the responses of

our control model, which has no inventories. The control model is a version of our inventory model

with "(i) = 1, which is also equivalent to a limiting version of the inventory model with � ! 1.
The �gure shows that the control model is signi�cantly less volatile than the inventory model

in terms of GDP (panel A), capital investment (panel C), and employment (panel D). Under our

benchmark calibrations, aggregate output is about 40%more volatile with inventories than without;
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similarly, aggregate employment and aggregate investment are also signi�cantly more volatile with

inventories than without. However, aggregate consumption is only slightly more volatile with

inventories than without.22 As the variance of idiosyncratic shocks decreases, the model�s impulse

responses gradually converge to those of the control model.

Table 2. Selected Inventory Statistics�

Mean ( SY ) Second Moments x = �St x = St
Yt

�x=�output 17.8 (16.7) 1.19 (0.86)
U.S. Data 0.55 (0.61) cor(x; output) 0.55 (0.61) -0.50 (-0.48)

cor(x; sales) 0.57 (0.41) -0.59 (-0.51)

�x=�output 11.0 0.55
Model A 0.24 cor(xt; output) 0.91 -0.75

cor(xt; sales) 0.60 -0.89

�x=�output 10.80 0.61
Model B 0.53 cor(xt; output) 0.88 -0.79

cor(xt; sales) 0.62 -0.92
�U.S. data (1958:1-2000:4): Total manufacturing inventory stock (S), sales (Y ), and output (�S + Y ).
Numbers in parentheses are NIPA data for aggregate inventory stock, sales, and GDP. Model A�s
calibration: � = 10; � = 10:13. Model B�s calibration: � = 6; � = 6:25.

Table 2 reports some selected population moments of inventory dynamics implied by the bench-

mark model (Model A) and the U.S. economy.23 We also report the results for the case where � = 6

(implying a markup of 20%) in the lower panel of Table 2 (Model B).24 With � = 6, we need to

recalibrate � (= 6:25) to generate a su¢ ciently volatile GDP that matches the data. The impulse

responses of Model B remain hump-shaped and look similar to those of Model A. Notice that the

benchmark model with � = 10 understates the inventory-to-sales ratio substantially. However, with

20% markup (Model B), the model can match the data quite well.25 Also note that the benchmark

22With inventories, consumption can be either slightly more volatile or less volatile, depending on the elasticity of
labor supply. However, the hump-shaped dynamics are not very sensitive to the elasticity of labor supply. That is,
we can also obtain hump-shaped impulse responses with log function of leisure.
23The average inventory-to-sales ratio (S=Y ) for the U.S. economy is based on the manufacturing sector�s shipment

(Y ) and total inventory stock (S) (including �nished goods, work in progress, and raw materials) for the period
1958:1-2000:4. This value is 0:55, which is consistent with that reported by Kahn, McConnell, and Perez-Quiros
(2002) based on real nonfarm inventories and �nal sales of goods (including both durables and nondurables). The
other U.S. statistics are based on NIPA data, where sales (Y ) is de�ned as GDP minus inventory investment (�S). The
inventory stock is measured as the cumulative sum of inventory changes with the initial value equals 0:65�GDP1958:1,
so that the estimated inventory stock shares a balanced growth rate with GDP. The resulting stock-to-sales ratio is
0:61, slightly higher than that of the manufacturing sector but lower than the �gure of 0:72 reported by KT (2007a).
The second moments of the data are estimated based on HP-�ltered data. To apply the HP �lter to inventory changes
(�St), we follow the method in Wen (2008) by obtaining a HP-�ltered inventory stock series �rst, and then derive
inventory changes that are consistent with the log-linearization method and the rate of depreciation assumed in the
model.
24The value of � is related to the degree of �rms�monopoly power. Estimates of markups typically fall in the

10-20% percent range, implying values of � in the 6-10 range (see, e.g., Rotemberg and Woodford, 1995; and Basu
and Fernald, 1997).
25To generate a high enough inventory-to-sales ratio, the model requires � to be small, but the value of � is bounded
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model can generate very volatile and procyclical inventory investment, with a volatility more than

10 times that of GDP and a correlation with GDP about 0:9. Despite this strongly procyclical

inventory investment, the inventory-to-sales ratio is countercyclical. Its correlation with GDP is

�0:75 and its correlation with sales is about �0:9. The results are similar for Model B. These
predictions are qualitatively consistent with the data.26

Equation (16) suggests that production at the �rm level rises with sales for both low- and

high-cost �rms, and equation (17) suggests that inventory investment rises with sales for low-cost

�rms (i.e., �rms with "(i) � "�t ); hence, average inventory investment, sales, and production across
�rms comove with each other. This implies that, under aggregate productivity shocks, (i) aggregate

inventory investment is procyclical and (ii) aggregate production is more variable than sales.

Equation (35) is the key equation to understanding the countercyclical inventory-to-sales ratio

and hump-shaped dynamics. This equation implies that the cuto¤ "�t comoves with consumption

growth (or the real interest rate). Under a positive, persistent aggregate productivity shock, ag-

gregate consumption rises gradually with a hump, implying that the cuto¤ increases in the initial

periods of the boom and declines afterward (because of negative consumption growth). That is, the

cuto¤ ("�t ) is procyclical (see the dot-dashed lines in panel F of Figure 1).
27 Because of the sharp rise

in the cuto¤ on impact, aggregate inventory investment does not rise as rapidly as aggregate sales

initially because fewer �rms make inventory investments when the cuto¤ is high, leading to a coun-

tercyclical aggregate inventory-to-sales ratio. Since equation (35) is derived independently from the

nonnegative pro�t constraint, borrowing constraints are thus not the cause for the countercyclical

inventory-to-sales ratio in the model. In fact, as we show in Section 5, relaxing the borrowing

constraint in equation (7) may lead to an even more countercyclical stock-to-sales ratio.28

A higher cuto¤ in the initial periods of the boom implies that more �rms opt to stockout,

which strengthens �nal sales and enables more rapid capital accumulation by households than the

case without inventories.29 This explains the dramatic increases in capital investment in the initial

below by �. However, Section 5 shows that the steady-state stock-to-sales ratio can be signi�cantly increased without
lowering the value of � if the borrowing constraint (equation (7)) is relaxed or if we assume di¤erent distributions for
"t(i).
26However, the simplicity of our benchmark model limits its quantitative �t in several respects. Most notably,

even though inventory investment is 10 times more volatile than that of GDP in the model, it still understates the
volatility of inventory investment and the volatility of inventory-to-sales ratio.
27The dot-dashed line is rescaled by multiplying � = 10:13 to the original value. The number of inventory-

accumulating �rms in our model is given by 1�F ("�t ). With Pareto distribution, we have 1�F ("�t ) = ("�t )��. Hence,
a 1% increase in the cuto¤ leads to �10:13% decline in the number of inventory-investing �rms. Thus, the rescaled
dot-dashed line captures the actual impact of the cuto¤ on aggregate inventory stock.
28This seemingly counterintuitive result occurs because borrowing constraints only restrict the inventory stock

at the �rm level but do not determine the changes in the distribution of inventory-holding �rms under aggregate
productivity shocks. In other words, borrowing constraints determine mainly the steady-state aggregate inventory-
to-sales ratio instead of the dynamic impulse response of the ratio.
29Under a positive aggregate technology shock, the marginal products of capital and labor both increase, giving rise

to the initial boom in the economy. This is true with or without inventories. However, inventories facilitate sales� not
only will low-cost �rms want to produce and sell more intermediate goods to the �nal-good sector, but high-cost �rms
can also sell more because of previously accumulated inventories. Thus, aggregate investment increases more than it
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phase of the boom in the inventory model. This, in turn, raises the future marginal product and

demand of labor and allows �rms to produce more inventories with greater production capacity

(and more relaxed borrowing constraints) in the subsequent periods. This results in a cumulative

process of expansion. Sooner or later the technology shock will be exhausted so that the engine of

inventory accumulation loses steam. Once the economy starts to contract, sales fall and �rms opt

to decumulate inventories so that the relative prices of intermediate goods rise to prevent revenue

from declining sharply. In particular, because intermediate-goods prices are much higher when

�rms deplete inventories, imperfectly competitive �rms opt to reduce production faster than they

would in the control model. This causes the economy to overshoot its steady state from above,

giving rise to a boom-bust�like propagation mechanism.

More speci�cally, the movements in aggregate inventories in our model come from two margins

� an intensive margin determined by individual �rms� inventory investment and an extensive

margin determined by the fraction of �rms making inventory investment. Idiosyncratic cost shocks

(in conjunction with a concave pro�t function in sales) provide the incentive for individual �rms

to hold inventories to smooth sales, so low-cost �rms opt to accumulate inventories. However,

holding inventories is costly because of depreciation and positive real interest rates. There is thus

a contemporaneous trade-o¤ between holding inventories and accumulating capital, which implies

that a positive aggregate productivity shock will change the equilibrium distribution of �rms so that

there are fewer "low-cost" �rms that opt to accumulate inventories (but with a higher intensity)

and more "high-cost" �rms that opt to stockout. This adjustment along the extensive margin

strengthens �nal sales but dampens the initial rise in aggregate inventory investment. Consequently,

capital investment can rise sharply and inventory investment increases only slowly with a lag.

However, since the purpose of accumulating capital is to produce more inventories to satisfy future

sales, inventory investment must eventually accelerate as the real interest rate declines (and the

borrowing constraint relaxes) over time. Associated with this acceleration is the sharp decrease of

the cuto¤ below the steady state in the middle of the boom (see the dot-dashed line in panel F of

Figure 1), indicating signi�cant increases in the fraction of �rms making inventory investment as the

capital stock (production capacity) peaks. Hence, the rapid accumulation of capital in the initial

periods facilitates more inventory investment in the subsequent periods, which further enhances

sales and capital accumulation in the future. This dynamic (intertemporal) reinforcement between

capital and inventory accumulations (with the help of endogenous labor supply) gives rise to an

inventory-accelerator mechanism and the hump-shaped dynamics in the model.30

would if inventories did not exist.
30 In a counterfactual experiment, we note that once capital adjustment costs are introduced so that the contempo-

raneous tradeo¤ and intertemporal reinforcement between capital and inventories are dampened, the hump-shaped
output dynamics then disappear and the volatility of GDP decreases signi�cantly. However, the variance of GDP
is still larger with inventories than without because the sales-smoothing mechanism is still working. This suggests
that borrowing constraints do not play a direct key role in giving rise to the hump-shaped dynamics (because capital
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To quantify the destabilizing e¤ects of inventories on GDP, Table 3 reports the business-cycle

statistics implied by the inventory model, the control model, and the models of KT (2007a) (in-

cluding their control model). In the table, C denotes aggregate consumption, I capital investment,

and N total hours.31 We normalize the SD of GDP to 1 in both models. Panel A in the table

reports SDs relative to each model�s own GDP, and panel B reports SDs relative to the counterpart

variables in the corresponding control model. The most informative information is in panel B.

The table shows that GDP in our model is 39% more volatile with inventories than without. This

value is even higher if the statistics are based on HP-�ltered samples (numbers in brackets). In

contrast, GDP in the KT model is only slightly (1:02 times) more volatile with inventories than

without. The main reason for this sharp di¤erence between the two models is that the components

of aggregate sales (especially investment) in our model are far more volatile with inventories than

without, whereas those in the KT model are signi�cantly less volatile with inventories than without.

For example, capital investment in our model is 2:24 times more volatile with inventories, but that

in the KT model is 14% less volatile with inventories. This is because inventories promote and

reinforce sales in our model while they dampen sales in the KT model.

Table 3. Business Cycles with and without Inventories�

GDP C I N
A: Standard deviations relative to GDP
Our model 1:0 0:47 [0:24] 4:28 [6:84] 0:73 [0:78]
KT model 1:0 0:35 6:32 0:72
B: Standard deviations relative to control
Our model 1:39 [1:50] 1: 03 [1:18] 2:24 [3:01] 1:76 [1:52]
KT model 1:02 0:92 0:86 1: 1
�Numbers are exact population moments, and numbers in brackets
(and the KT model) are based on HP-�ltered samples (with smoothing
parameter 1600 and sample size 5000).

That inventory investment promotes and reinforces sales in our model can be seen from equation

(37), which can be rearranged to

Yt =
~" (� � 1)
h("�t )

[St � (1� �s)St�1] +
~" (� � 1)
h("�t )

(1� �s)F ("�t )St�1; (46)

where h("�t ) =
�
��� ("

�
t )
��� under Pareto distribution. This equation shows that aggregate sales

depend positively on current aggregate inventory investment, St � (1� �s)St�1, and the lagged

adjustment costs do not directly interfere with borrowing constraints). Nonetheless, borrowing constraints may have
indirectly facilitated this propagation mechanism because they may strengthen �rms� strategic motives for capital
accumulation to help relax the capacity constraints in subsequent periods.
31The statistics for our model are exact population moments. We also report in the brackets statistics based on

HP-�ltered samples (with the smoothing parameter � = 1600 and sample size 5000).
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inventory stock of high-cost �rms, F ("�t )St�1. These positive relationships are further ampli�ed

when the cuto¤ is procyclical because @h
@"� < 0 and @F

@"� > 0. This means that an increase in the

fraction of high-cost �rms (which opt to stockout because of a high real interest rate) strengthens

sales. Consequently, the variance of aggregate production in our model is signi�cantly ampli�ed

by inventories, whereas it is essentially una¤ected by inventories in the KT model because in that

model the reduction in the volatility of sales o¤sets the potentially positive impact of procyclical

inventory changes on GDP.

5 Extensions and Robustness Analysis

5.1 Relaxing Borrowing Constraints

To prevent in�nite production and unlimited inventory accumulation under the production-cost�

smoothing motive, the benchmark model assumes that �rms cannot pay negative dividends to

households. Here we relax this assumption by allowing �rms to incur negative pro�ts, so constraint

(7) becomes

pt(i)yt(i)�
�t
"t(i)

xt(i) � �b0; (47)

where the parameter b0 � 0 measures the extent of �rms�external �nancing by households. With
this modi�cation, a �rm�s decision rules for optimal production and inventory investment become

xt(i) =

8<:
�
��1yt(i) +

"t(i)
�t
b0 if "t(i) � "�t

yt(i)� (1� �s)st�1(i) if "t(i) < "�t

(48)

st(i) =

8<:
1
��1yt(i) +

"t(i)
�t
b0 + (1� �s)st�1(i) if "t(i) � "�t

0 if "t(i) < "�t

: (49)

Clearly, the possibility of external �nancing (b0 > 0) allows a �rm to produce and accumulate

more inventories in the case of low idiosyncratic marginal cost (" � "�). Consequently, the stock-

adjustment equation (23) will have an additional positive term, b0�
R
"�"�t

"dF ("), on its right-hand

side and the aggregate stock-to-sales ratio in equation (44) becomes

S

Y
=

1

1� (1� �s) (1� F )

�
1

� � 1
h("�)R
"�dF (")

+
b

�

Z
"�"�

"dF (")

�
; (50)

where b � b0
Y denotes a �rm�s external �nancing limit-to-sales ratio in the steady state. Clearly,

the aggregate inventory-to-sales ratio increases with the borrowing limit (b) in the steady state.
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Table 4 con�rms that allowing for negative pro�ts increases the steady-state inventory-to-sales

ratio.32 For example, when � = 10, � = 10:15, and b = 0:30, the implied stock-to-sales ratio is

0:61, which is 10% larger than the average stock-to-sales ratio of the manufacturing sector but

exactly the same as the aggregate inventory-to-sales ratio for the U.S. economy (see Table 2). More

importantly, relaxing borrowing constraints does not necessarily make the inventory-to-sales ratio

less countercyclical. On the contrary, it may make the ratio more countercyclical. For example,

when the value of b increases from 0 to 0:10, the inventory-to-sales ratio increases from 0:24 to

0:36, and its correlation with GDP drops from �0:22 to �0:41. The main intuition is that allowing
negative pro�ts may increase the steady-state inventory level more than it can increase steady-

state sales; consequently, the volatility of inventory stock relative to that of sales may be reduced

instead of increased, leading to a more countercyclical stock-sales ratio. In addition, although �rms

with "(i) > "� increase inventory investment, the number of inventory-investing �rms declines at

the same time because "� increases, dampening the rise in aggregate inventories on the extensive

margin. Hence, the assumption of nonnegative dividends in the benchmark model does not play the

same role as the assumption of increasing marginal costs does in Bils and Kahn (2000), although

it is consistent with increasing marginal costs.33

Table 4. E¤ects of Debt on Inventory Dynamics (� = 10; � = 10:15)
b0
Y Ratio (b) Inventory-to-Sales Ratio Correlation with GDP

�St
St
Yt

0 0:24 0:87 �0:22
0:05 0:30 0:84 �0:34
0:10 0:36 0:81 �0:41
0:15 0:43 0:80 �0:42
0:30 0:61 0:79 �0:40

Because inventories magnify and propagate the impact of aggregate shocks in our model through

an inventory-accelerator mechanism, allowing b > 0 will strengthen the model�s propagation mech-

anism and make the model more volatile. The left panel in Figure 2 shows that, as the value of b

increases, the variance of GDP rises accordingly because output becomes more hump-shaped (we

defer discussion of the middle and right panels until the next subsection).34 The intuition is that

the ability to borrow raises the level of inventories across �rms, thus allowing �rms to increase sales

more than they could previously; which strengthens capital accumulation in the initial periods of

32The statistics reported in Table 4 are exact population moments implied by our model. In generating Table 4, we
have relaxed the value of � from 10:13 to 10:15 but have kept the other structural parameters in Table 1 unchanged.
This allows us to examine a wider range of the possible values of b without overstating the stock-to-sales ratio.
33Bils and Kahn (2000) cast their arguments in a representative-agent framework where there is no distinction

between aggregate shocks and idiosyncratic shocks.
34The value of � assumed in generating the graphs in the left window in Figure 2 is � = 10:15, consistent with that

in Table 4.
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a boom and reinforces the inventory-accelerator mechanism of the model.35

Figure 2. Impulse Responses of GDP to a 1% TFP Shock

5.2 Alternative Distributions

In the previous analyses, we assumed Pareto distribution for idiosyncratic productivity shocks.

Pareto distribution has the property that it is long-tailed and �ts well the empirical pattern of

the distribution of �rm size and productivity. This long-tail property has important implications

for �rms�optimal inventory behaviors, especially for the cuto¤ variable, "�t . Because inventories

are held to facilitate future sales when the marginal costs may be high in the next period, �rms

have less incentive to hold inventories to smooth sales knowing that it is always likely to draw a

very low cost shock (or very high productivity shock) tomorrow. They thus opt to choose a higher

cuto¤ so that in equilibrium the number of �rms making positive inventory investment is relatively

low in the steady state. This leads to a relatively low aggregate stock-to-sales ratio under Pareto

distribution. Suppose we change the distribution function to lognormal, log "(i) s N
�
�; '2

�
, with

mean � and SD '. Without loss of generality, we assume � = �'2

2 , so that the expected value

E ["] = 1. With this distribution, the number of inventory-holding �rms can become signi�cantly

35This suggests that borrowing constraints are not the main friction that gives rise to the hump-shaped dynamics
in the model.
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larger in the steady state than that under the Pareto distribution. The reason is that lognormal

distribution is more skewed toward lower realizations of "(i) and is less fat-tailed for high values

of "(i) compared with Pareto distribution. Hence, �rms expect to have relatively higher chances

to draw low productivity (or high marginal costs), especially if the value of ' is relatively large.

As a result, �rms opt to reduce the cuto¤ "� and make positive inventory investment even in a

relatively high-cost state. This leads to a much higher aggregate stock-to-sales ratio. For example,

holding � = 10, if we set ' = 0:122 so that the SD of "(i) is 0:122, the same as that under Pareto

distribution with the shape parameter � = 10:13, the inventory-to-sales ratio is 0:51, signi�cantly

higher than that under Pareto distribution. Assuming a uniform distribution with E ["] = 1 and

"(i) 2 [a; 2� a] can also give rise to a much lower cuto¤ and a much higher inventory-to-sales ratio
than previously if a is close enough to 0. For example, given � = 10, if a = 0:15, the predicted

inventory-to-sales ratio is 1:8, more than seven times larger than that under Pareto distribution.

Again, because inventories are destabilizing in our model, the tendency to lower the cuto¤ "� and

thus hold more inventories makes the economy more volatile. More importantly, with alternative

distributions the model can still generate hump-shaped output dynamics, provided that the variance

of "(i) is su¢ ciently large. The middle and right panels in Figure 2 depict the impulse responses of

aggregate output under alternative distributions for various values of ' and a. Since the intensity

of inventory accumulation depends positively on the variance of "(i), both the magnitude and

the length of the hump-shaped impulse response functions increase with ' (lognormal case) and

decreases with a (uniform case), as expected.

On the other hand, holding ' or a constant, increasing the value of � (i.e., reducing the markup)

stabilizes GDP because �rms have weaker incentives to hold inventories to smooth sales when the

pro�t function is less concave in sales. Inventories will disappear completely when � !1.36 This
suggests that the destabilization force of inventories to aggregate output also depends crucially on

the monopoly power of �rms (or the demand elasticity). Therefore, an alternative explanation for

the "Great Moderation" of the U.S. economy since the mid-1980s may be that we have had a more

competitive economy instead of an improved inventory management technology, since both can lead

to reduced inventories.

5.3 Dispersion and Parameter Sensitivity

Although we have shown that inventories may signi�cantly destabilize the economy in a model of

imperfect competition with production-cost�smoothing motives, our results are nonetheless sensi-

tive to a number of parameters in the model, most notably the distribution and the variance of the

36With lognormal or uniform distributions, the functions de�ned before equation (35),
fg1("�); g2("�); h("�); q("�); :::g, are integrable for any values of �. Hence, unlike the case of Pareto distribu-
tion, the e¤ects of � can now be disentangled from those of the variance of the distributions.
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idiosyncratic shocks. Recall that we have calibrated the value of � in the benchmark model so that

the the variance of GDP in the model matches its counterpart in the U.S. economy. In the middle

and right panels of Figure 2, however, we allow parameter values for ' and a so that the impulse

responses of GDP are hump-shaped. An important question is how realistic are such values? One

concern is that the variance of "(i) required to generate hump-shaped impulse responses may be

too large to be justi�ed empirically.

We address this question by looking at the implied dispersions in productivity, prices, and

sales across �rms in our model when the variance of "(i) is chosen so that the SD of GDP in the

model matches that in the data. The price of good i is given by equation (11), p(i) = �
��1�

1
"(i) ,

and sales are given by yt(i) =
�
��1
�

��
Zt

�
"t(i)
�t

��
. Following the empirical literature, we measure

price dispersion by the SD of relative price changes across �rms, !p =

rR �p(i)
�p � 1

�2
dF , where

�p = E [p(i)] is the mean; and we measure sales dispersion and productivity dispersion analogously

by !y =

rR �y(i)
�y � 1

�2
dF and !" =

rR � "(i)
�" � 1

�2
dF , respectively. With Pareto distribution,

we have !" =
q

1
�(��2) , !p =

q
1

�(�+2) , but !y does not exist
37; with lognormal distribution, we

have !" = !p = ' and !y = �'; and with uniform distribution, we have !" =

r
2
3
(2�a)3�a3
(2�a)2�a2 � 1,

!p =

s�
2�2a
ln 2�a

a

�2
1

(2�a)a � 1, and !y =
r

(2�2a)(1+�)2

((2�a)1+��a1+�)
2
(2�a)1+2��a1+2�

1+2� � 1.

The implied dispersions for productivity, prices, and sales in the model are reported in Table

5. The empirical estimates of productivity dispersion are around 0:84 � 1:67 and sales dispersion
around 0:6 � 0:75, as reported by Bernard, Eaton, Jensen, and Kortum (2003, p. 1283 and table

2) for U.S. �rms. The empirical range of price dispersion is around 0:3 � 0:37, as reported by

Reinsdorf (1994) for major U.S. cities.

37With � < 2�, price dispersion is not well de�ned. This is because the second moment of "(i)� does not exist
under Pareto distribution if � < 2�.
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Table 5. Dispersion of Productivity (!"), Prices (!p), and Sales (!y)

�gdp
S
Y !" !p !y

U.S. Data 0.024 0.55 0.84�1.67 0.3�0.37 0.6�0.75

Control 0.016 0.00 0.00 0.00 0.00

Pareto (� = 10:13) 0.024 0.24 0.11 0.09 NA
(� = 6:25; � = 6) 0.024 0.53 0.19 0.14 NA

Lognormal (' = 0:35) 0.024 1.28 0.35 0.35 3.50

Uniform (a = 0:202) 0.024 1.55 0.46 0.68 2.03
�SDs of GDP (�gdp) are based on HP-�ltered samples.

S
Y denotes stock-to-sales ratio.

Several results emerge from Table 5: (1) Regardless of the type of distributions, the model with

inventories can generate enough volatility in GDP to match that in the U.S. economy, whereas the

control model without inventories explains only 0:67% of the data (assuming the SD of technology

innovation is 0:007).38 However, under lognormal and uniform distributions, the hump-shaped

dynamics do not emerge unless the variance of "(i) are further increased (see Figure 2).39 (2)

As noted before, Pareto distribution tends to understate the inventory-to-sales ratio ( SY ) unless

with large markups (20%) or external borrowing, and lognormal and uniform distributions tend to

overstate the stock-to-sales ratio even with small markups and no borrowing. (3) To match the

volatility of the U.S. economy, the assumed variance of productivity shocks ("(i)) under various

distributions does not exceed the empirical counterparts estimated by Bernard, Eaton, Jensen, and

Kortum (2003) for U.S. �rms; hence, the values of f�; '; ag assumed in Table 5 are conservative in
this regard. However, under lognormal and uniform distributions, the implied price dispersion and

sales dispersion are too large; and under Pareto distribution, sales dispersion is not well de�ned

(thus the benchmark model cannot be evaluated along this dimension).

In addition to the above sensitivity results, we also note that the predicted SD of GDP is quite

sensitive to the dispersion of productivity across �rms, especially under Pareto distribution. For

example, under Pareto distribution, when � increases from 10:13 to 10:15 (indicating the dispersion

of prices declines by less than 0:5%), the implied SD of GDP drops by 20%, while the implied

stock-to-sales ratio decreases by less than 0:5%. However, this is less the case under alternative

distributions. For example, under uniform distribution, when a increases from 0:16 to 0:18, the

price dispersion declines by 6%, the SD of GDP drops by 16%, and the stock-to-sales ratio decreases

by 6%. Although we do not have an empirical base to judge these values, we believe that GDP is

38This problem of standard RBC models is discussed in detail by King and Rebel (1999).
39For example, under uniform distribution, we need a � 0:16 to generate a visible hump in GDP. However, we only

need a = 0:202 to generate a su¢ ciently large SD in GDP to match the data.
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too sensitive to the dispersion of productivity under Pareto distribution.

5.4 Persistent Idiosyncratic Shocks

We assumed i:i:d idiosyncratic cost shocks in the above analyses. This assumption, however, may

not be entirely realistic and may have important consequences on our results. Here we relax

this assumption by allowing for a second type of idiosyncratic cost shock, �t(i), which is serially

correlated. Thus we modify �rms�production function to

xt(i) = At�t(i)"t(i)kt(i)
�nt(i)

1��; (51)

where "t(i) is the original i:i:d shocks with a compact support. To keep the model analytically

tractable, we assume that �(i) takes a �nite number of discrete values. The original shock "(i) is still

needed because only shocks with a continuum support can give rise to a time-varying cuto¤, which

a¤ects aggregate inventories along the extensive margin; this margin is crucial for our inventory-

accelerator mechanism. On the other hand, when the shocks are persistent, we need to take the

joint distribution of inventory and the idiosyncratic shocks into consideration; the discrete nature

of �(i) makes the joint distribution tractable. So for simplicity, we assume that �t(i) follows a

discrete AR(1) process with serial correlation ��: In each period t, there is a constant probability

�� such that �t(i) = �t�1(i) and probability 1� �� that �t(i) is redrawn from the following discrete

invariant distribution, Pr
�
�t(i) = �j

�
= � j , for j = 1; 2; :::; J ; where

�
�j ; � j

	
are constant. That

is, �t(i) may either remain at its last-period value (with probability ��) or take one of J discrete

new values if it is redrawn (with probability 1 � ��). Without loss of generality, assume the

mean
P
� j�j = 1. It is easy to see that Et

�
�t+1(i)j�t(i)

�
= ���t(i) + (1 � ��); hence, we have

Et
�
�t+1(i)� 1j�t(i)

�
= ��[�t(i)� 1], or Et

�
�t+`(i)� 1j�t(i)

�
=
�
��
�`
[�t(i)� 1] for ` = 1; 2; :::;1.

With the second idiosyncratic shock �t(i), the derivation of aggregate dynamics becomes more

complicated because of tedious aggregation. Nonetheless, the model remains analytically tractable.

We report our main results here and provide the details of the analyses in the Appendix. We

calibrate the distribution of �t(i) by setting J = 2, �1 = 0:97, �2 = 1:03, �1 = �2 = 0:5, and

�� = 0:9. The other structural parameters remain the same as in Table 1. The impulse responses

of the model to an aggregate productivity shock are depicted in Figure 3. The �gure shows that

adding persistent idiosyncratic shocks to the model does not diminish the hump-shaped dynamics of

our model; in fact, it enhances the inventory-accelerator mechanism and ampli�es the destabilizing

role of inventories to the economy. The intuition is that �rms with a high realization of �t(i) expect

their marginal costs to remain low with high probability; hence, they reduce the cuto¤ ("�jt) and

thus have a stronger incentive than otherwise to accumulate inventories, which more than o¤sets the
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actions of the �rms with a low realization of �t(i). This reinforces the original inventory-accelerator

mechanism.

Figure 3. Impulse Responses to a 1% TFP Shock (� Benchmark, - - - Persistent shock)

5.5 Sales Smoothing and the Conventional Wisdom

Sales smoothing at the �rm level is a key micromechanism that makes inventories destabilizing

in our general-equilibrium model. Under sales smoothing, the conventional partial-equilibrium

argument about the destabilizing role of inventories becomes approximately valid. Namely, if

movements in �nal sales are taken as given, procyclical inventory investment would then imply that

changes in inventories must raise the cyclical volatility of GDP. Although this argument ignores the

general-equilibrium feedback of inventories on sales, it nonetheless holds approximately true in our

model because sales smoothing makes sales a less ideal bu¤er to dampen the destabilizing e¤ects

of inventories.40

40On the other hand, the procyclical cuto¤ (the extensive margin) in our model ampli�es the destabilizing role of
inventories under sales smoothing and is key to generating a countercyclical stock-to-sales ratio and hump-shaped
dynamics in aggregate demand. For example, in a counterfactual experiment, we delete equation (33) from our
model (which determines the cuto¤) and let the cuto¤ "�t be exogenously set so that it responds to technology shocks
negatively. The results show that inventories are still destabilizing to GDP but mainly during the impact period
(because of sales smoothing); also, the hump-shaped dynamics disappear completely and the inventory-to-sales ratio
becomes procyclical. In such a case, the lack of a hump-shaped propagation mechanism reduces the destabilizing
e¤ect of inventories substantially compared with the case of a procyclical cuto¤.
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We believe this intuition also applies to other general-equilibrium inventory models. For ex-

ample, when we introduce habit formation and capital adjustment costs into the model of KT

(2007a), so that �nal sales in their model are severely smoothed and much less able to serve as a

bu¤er for dampening inventory �uctuations through the endogenous general-equilibrium feedback

of inventories on sales, the volatility of aggregate output can rise signi�cantly with inventories. More

speci�cally, suppose we change the utility function of the KT model to log (ct � �c�ct�1)+�
�
1� nht

�
,

where �c measures the consumption level of average households in the economy, and add capital-

adjustment costs �k
2

�
kt+1 � �k

�2, where �k is the steady-state level of the capital stock. When we
set the habit-formation parameter �c = 0:8 and the adjustment-cost parameter �k = 0:1, the SD

of GDP in the KT model increases by about 10% more with inventories than without.41 This sug-

gests that the sales-smoothing mechanism under imperfect competition in our model is important in

driving our results and that the general-equilibrium e¤ects of inventories on �nal sales emphasized

by KT (2007a) are indeed crucial for understanding whether inventories are destabilizing or not.42

Notice that sales smoothing does not imply that inventories stabilize sales. On the contrary, it

implies that inventories are less able to dampen (stabilize) sales through the price mechanism. For

this reason, the main di¤erence between our model and those of KT (2007a) and Wen (2008) can

be summarized as follows. In our model, inventories enhance sales (especially capital spending)

through a general-equilibrium trade-o¤ between inventory investment and capital accumulation,

which postpones aggregate inventory investment through adjustments along the extensive margin.

In the model of KT (2007a), inventories stabilize sales through resource relocation from the �nal-

goods sector to the intermediate-goods sector, thereby dampening �nal demand. In Wen�s (2008)

model, inventories under the stockout-avoidance motive lead to a procyclical asset value of inven-

tories, which discourages sales in a boom and encourages sales in a recession, therefore reducing

the volatility of aggregate demand more than raising the variance of aggregate production. These

di¤erences are driven mainly by the distinct microlevel motives for �rms to hold inventories. These

diverse motives for holding inventories lead to di¤erent general-equilibrium e¤ects of inventories on

�nal sales, and thus on the variance of aggregate output.

6 Conclusion

This paper provides a general-equilibrium model of inventories with microfoundations. In the

model, idiosyncratic cost shocks can induce monopolistic �rms to bunch production and smooth

41Computer programs for solving the KT model with habit formation and adjustment costs are available upon
requests.
42This is why inventories become less destabilizing in our model as we increase the value of � (i.e., the inverse of

the markup) because a higher value of � makes a �rm�s pro�t function less concave in sales and thus reduces �rms�
incentives for sales smoothing.
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sales by holding inventories. The intertemporal substitution of production activities at the �rm

level is based on a production-cost�smoothing motive emphasized in the empirical and partial-

equilibrium literature by Eichenbaum (1989) and others. However, our model rationalizes the

ad hoc cost functions and the associated target-adjustment equations assumed in this empirical

literature. The predictions of our general-equilibrium model are broadly consistent with the stylized

facts of aggregate inventory behavior, such as procyclical inventory investment and countercyclical

inventory-to-sales ratio. Our analysis also reveals that inventory investment motivated by sales-

smoothing may not only amplify aggregate shocks but also propagate them. This �nding con�rms

(within a special context) a long-standing conjecture in the history of economic thought (e.g.,

Metzler, 1941) that inventories can serve as an accelerator of the business cycle.

In light of the provocative �ndings of Khan and Thomas (2007a) and Wen (2008), our analysis

suggests that whether inventories are stabilizing or destabilizing to the aggregate economy de-

pends crucially on the sources of �rm-level uncertainties and incentives for holding inventories. If

idiosyncratic marginal-cost shocks dominate idiosyncratic demand shocks, for example, then the

sales-smoothing motive studied in this paper is more important than the stockout-avoidance motive

studied by Wen (2008); hence, inventories are destabilizing; otherwise, inventories may be stabiliz-

ing. In other words, in contrast to the partial-equilibrium tradition of Blinder (1981, 1986a, 1990)

and others in the earlier literature, the insight gained from general-equilibrium analysis (Khan and

Thomas, 2007a; Wen, 2008; and this paper) is that the destabilizing nature of inventories does not

hinge completely on whether inventory investment is procyclical (or whether production is more

variable than sales), but crucially on the speci�c motives for holding inventories and the dynamic

impact of such motives on aggregate sales.
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Appendix
This appendix provides details for analytically solving the model with persistent idiosyncratic

cost shocks, �t(i). The complication arising from persistent idiosyncratic shocks is aggregation.

However, if the persistent idiosyncratic shocks assume discrete values, aggregation is still manage-

able, although it is more tedious than the case of i:i:d shocks.

The distribution of �t(i) is described in Section 5.3. With the � shock introduced, the �rm�s

maximization program becomes

maxE0

1X
t=0

�t�t

�
pt(i)yt(i)�

�t
"t(i)�t(i)

xt(i)

�
(52)

subject to

yt(i) + st(i) = xt(i) + (1� �s)st�1(i) (53)

st(i) � 0 (54)

pt(i)yt(i)�
�t

"t(i)�t(i)
xt(i) � 0: (55)

Denoting f�t(i); �t(i); �t(i)g as the Lagrangian multipliers of constraints (53)-(55), respectively,
the �rst-order conditions of fxt(i); yt(i); st(i)g are given by

�t
"t(i)�t(i)

(1 + �t(i)) = �t(i) (56)

�
� � 1
�

�
yt(i)

� 1
�Z

1
�
t (1 + �t(i)) = �t(i) (57)

�t(i) = �(1� �s)Et
�
�t+1
�t

�t+1(i)

�
+ �t(i): (58)

The optimal sales is then given by

yt(i) =

�
� � 1
�

��
Zt

�
"t(i)�t(i)

�t

��
; (59)

and the monopoly price is given by

pt(i) =
�

� � 1
�t

"t(i)�t(i)
: (60)

Decision Rules for Inventories
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Because �t(i) may take J di¤erent values in any period, there exist J corresponding cuto¤s "
�
j;t,

j = 1; 2; :::; J . For each value �j in period t, we have the following two cases to consider for a �rm�s

decision rules. We call a �rm with �t(i) = �j a type-j �rm.

Case A. "t(i) � "�j;t. Suppose st(i) > 0; �t(i) = 0. In such a case, equation (58) implies

�t(i) = �(1� �s)Et�t+1�t
�t+1(i), and equation (56) implies

�t
"t(i)�j

� �(1� �s)Et
�t+1
�t

�
���j;t+1(i) + (1� ��)��t+1(i)

�
; (61)

where �j;t+1(i) is the value of �t+1(i) if �t+1(i) = �t(i) = �j , and ��t+1(i) �
PJ
`=1 � `�`;t+1(i) is the

average value of �`;t+1(i) over all other possible values of � if �t+1(i) is redrawn. Because �t(i) � 0,

this implies "t(i) � �t

�(1��s)Et
�t+1
�t
[���j;t+1(i)+(1���)��t+1(i)]

� "�j;t, which de�nes the cuto¤ value "
�
j;t

and the relationship

�(1� �s)Et
�t+1
�t

�
���j;t+1(i) + (1� ��)��t+1(i)

�
� �t
�j"

�
j;t

: (62)

Equation (56) then further implies 1+�t(i) =
"t(i)
"�j;t
. Hence, we conclude that �t(i) > 0 if "t(i) > "

�
j;t.

In such a case, pro�t constraint binds, pt(i)yt(i) = �t
"t(i)�j

xt(i), which together with (60) implies

xj;t(i) =
�

� � 1yj;t(i): (63)

This implies xt(i) > yt(i), or production exceeds sales.

Case B. "t(i) < "�j;t. Suppose pt(i)yt(i) >
�t

"t(i)�j
x(i); �t(i) = 0. Then equations (56) and

(62) imply �t
"t(i)�j

= �t(i) =
�t
"�j;t�j

+ �t(i), which implies �t(i) = �t
"t(i)

� �t
"�j;t

> 0. Hence, we have

st(i) = 0. In such a case, the �rm opts to stockout and the resource identity implies xt(i) =

yt(i)� (1� �s)st�1(i):
The decision rules of a type-j �rm with �t(i) = �j in period t can thus be summarized by the

following policy functions:

yt("t; �j ; st�1) =

�
� � 1
�

��
Zt

�
"t�j
�t

��
(64)

xt("t; �j ; st�1) =

8<:
�
��1yt("t; �j ; st�1) if "t � "�j;t

yt("t; �j ; st�1)� (1� �s)st�1 if "t < "�j;t

(65)
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st("t; �j ; st�1) =

8<:
1
��1yt("t; �j ; st�1) + (1� �s)st�1 if "t � "�j;t

0 if "t < "�j;t

: (66)

Since the shadow value of inventory satis�es

�t("t; �j ; st�1) =

8><>:
�t
"�j;t�j

if "t � "�jt

�t
"t�j

if "t < "�jt

; (67)

equation (62) becomes

�t
�j"

�
j;t

= �(1��s)Et
�t+1
�t

"
���t+1

�j
E"max

(
1

"t+1
;
1

"�jt+1

)
+

JX
`=1

(1� ��)�t+1
�`

� `E"max

(
1

"t+1
;
1

"�`t+1

)#
:

(68)

This equation determines the cuto¤ "�j;t. Notice that the optimal cuto¤ depends negatively on the

value of �j because a higher productivity enables more type-j �rms to accumulate inventories, other

things equal.

Aggregation

By the law of large numbers, the �nal-goods production function, Zt =
hR
yt(i)

��1
� di

i �
��1
, and

the decision rule for �rms�sales, yt(i) =
�
��1
�

��
Zt

�
"t(i)�t(i)

�t

��
, imply

Zt =

�
� � 1
�

�� Zt
��t

�Z
"��1dF (")

� �
��1 hX

� `�
��1
`

i �
��1

: (69)

This implies that the aggregate marginal cost is constant,

�t = � =

�
� � 1
�

��Z
"��1dF (")

� 1
��1 hX

� `�
��1
`

i 1
��1

: (70)

De�ne Yt �
R 1
0 yt(i)di; Kt �

R 1
0 kt(i)di; Nt �

R 1
0 nt(i)di; Xt �

R 1
0 xt(i)di, and St �

R 1
0 st(i)di. The

level of aggregate sales is given by

Yt =

�
� � 1
�

�� Zt
��t

�Z
"�dF (")

� hX
� `�

�
`

i
� PZt; (71)

where

P �
�R
"�dF (")

�
[
P
� `�

�
` ]�R

"��1dF (")
� �
��1

�P
� `�

��1
`

� �
��1

(72)
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can be interpreted as an aggregate measure of the relative price of the �nal good in terms of

intermediate goods. Note P = 1 if " and � are constant across �rms.

De�ne the index function,

1�t(i)=�j =

8<:
1 if �t(i) = �j

0 otherwise
; (73)

to facilitate the aggregation of �rm-level variables. Note that 1�t(i)=�j = 1 with probability � j . We

have

Xt �
Z 1

0
xt(i)di =

Z 1

0

�X
xt(i)1�t(i)=�j

�
di: (74)

De�ne

Xj;t �
R 1
0 xt(i)1�t(i)=�jdiR 1
0 1�t(i)=�jdi

=

R 1
0 xj;t(i)di

� j
(75)

as the average production of type-j �rms with �t(i) = �j . So we have

Xt =
X

� jXj;t: (76)

De�ne

Sj;t�1 � ��1j
Z 1

0
st�1(i)1�t(i)=�jdi (77)

as the average past inventory stock of all type-j �rms from the perspective of period t. Then by

equation (65), we have

Xjt = ��1j

Z 1

0
xj;t(i)di

=

Z
"�"�j;t

�
�

� � 1

�
� � 1
�

��
Zt

�
"�j
�t

���
dF (")

+

Z
"<"�j;t

�
� � 1
�

��
Zt

�
"�j
�t

��
dF (")� (1� �s)Sj;t�1F ("�j;t); (78)

or equivalently,

Xjt = Zt

�
� � 1
�

��
���t ��j

"
�

� � 1

Z
"�"�j;t

"�dF (") +

Z
"<"�j;t

"�dF (")

#
� (1� �s)F ("�j;t)Sj;t�1: (79)
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Note that st�1(i) is independent of "t(i) and �t(i).

If we group type-j �rms in period t+ 1 into two groups, one with probability ��, the �rms do

not make a new draw of �t+1(i) so that �t+1(i) = �t(i) = �j ; and another group with probability

1 � ��, the �rms make a new draw for �t+1(i) so that �t+1(i) = �0t+1(i) = �j . Then the average

inventory stock of type-j �rms at the end of period t is given by

Sj;t = ��1j

Z
st(i)1�t+1(i)=�jdi

= ��1j ��

Z
st(i)1�t+1(i)=�t(i)=�jdi+ �

�1
j (1� ��)

Z
st(i)1�t+1(i)=�0t+1(i)=�jdi

= ��1j ��

Z
st(i)1�t(i)=�jdi+ �

�1
j (1� ��)

Z
st(i)di

Z
1�0t+1(i)=�jdi; (80)

where the last term derives from the fact that the new draw �0t+1(i) is independent of the �rm�s

inventory history. Since
R
1�0t+1(i)=�jdi = � j , we can rewrite the above de�nition as

Sj;t = �
�1
j ��

Z
st(i)1�t(i)=�jdi+ (1� ��)St; (81)

where St �
R
st(i)di. It is easy to check that St =

P
� jSjt. We need to calculate the average inven-

tories of type-j �rms in period t, namely, the �rst term (
R
st(i)1�t(i)=�jdi) in the above equation.

Using the decision rule (66), we have

��1j

Z
st(i)1�t(i)=�jdi

=

Z
"�"�j;t

�
1

� � 1

�
� � 1
�

��
Zt

�
"�j
�t

���
dF (") + (1� �s)��1j

Z 1

0
st�1(i)1�t(i)=�j1"t(i)�"�j;tdi

= Zt

�
� � 1
�

��
���t ��j

1

� � 1

Z
"�"�j;t

"�dF (") + (1� �s)[1� F ("�j;t)]Sj;t�1: (82)

It follows that

Sj;t = ��Zt

�
� � 1
�

�� ���t ��j
� � 1

Z
"�"�j;t

"�dF (") + ��(1� �s)[1� F ("�j;t)]Sj;t�1 +
�
1� ��

�
St: (83)

We need to check that the following resource identify holds:

Yt + St = (1� �s)St�1 +Xt: (84)
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Since

Xt = Zt

�
� � 1
�

��
���t

JX
j=1

� j�
�
j

"Z
"<"�j;t

"�dF (") +
�

� � 1

Z
"�"�j;t

"�dF (")

#
�(1��s)

JX
j=1

F ("�j;t)� jSj;t�1

(85)

and

St = Zt

�
� � 1
�

�� ���t
� � 1

JX
j=1

� j�
�
j

Z
"�"�j;t

"�dF (") + (1� �s)
JX
j=1

[1� F ("�j;t)]� jSj;t�1; (86)

we have

Yt + St =

�
� � 1
�

�� Zt
��t

�Z
"�dF (")

� hX
� j�

�
j

i
Zt + Zt

�
� � 1
�

�� ���t
� � 1

JX
j=1

� j�
�
j

Z
"�"�j;t

"�dF (")

+(1� �s)
JX
j=1

[1� F ("�j;t)]� jSj;t�1: (87)

On the other hand, we know that

Xt + (1� �)St�1 = Zt
�
� � 1
�

��
���t

JX
j=1

� j�
�
j

"Z
"<"�j;t

"�dF (") +
�

� � 1

Z
"�"�j;t

"�dF (")

#

�(1� �s)
JX
j=1

F ("�j;t)Sj;t�1 + (1� �)
JX
j=1

� jSjt�1: (88)

Hence, it can be veri�ed that Yt + St = (1� �s)St�1 +Xt.
The factor demand functions imply rtKt = ��Mt and wtNt = (1� �) �Mt, where Mt �R 1

0
xt(i)

"t(i)�t(i)
di: Since � � 1

A

�
rt
�

�� � wt
1��

�1��
, these aggregate factor demand functions imply the

aggregate production function,

Mt = AtK
�
t N

1��
t : (89)

Using the de�nition of Mt, we also have

Z 1

0

xt(i)

"t(i)�t(i)
di =

Z 1

0

xt(i)

"t(i)�t(i)

24 JX
j=1

1�t(i)=�j

35 di: (90)

De�ning

Mj;t =
1

�j

R 1
0
xt(i)
"t(i)

1�t(i)=�jdiR 1
0 1�t(i)=�jdi

=
1

� j�j

Z 1

0

xt(i)

"t(i)
1�t(i)=�jdi; (91)
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we then have

Mt =
X

� jMj;t: (92)

Using the decision rule of xt(i), we then have

Mj;t =
1

�j
Zt

�
� � 1
�

��
���t ��j

"Z
"<"�j;t

"��1dF (") +
�

� � 1

Z
"�"�j;t

"��1dF (")

#
� 1
�j
(1��s)Sj;t�1

Z
"<"�j;t

dF (")

"
:

(93)

Therefore, we have �nished the aggregation problem.

General Equilibrium

To close the model, we add a representative household. The household�s problem is identical to

that in the benchmark model and the household�s budget constraint can be shown to be the same

as before: Ct + Kt+1 � (1 � �k)Kt = Zt =
Yt
P . De�ne R("

�
j;t) =

R
max

n
1

"t+1
; 1"�j

o
dF , G("�j;t) =hR

"<"�j;t
"��1dF (") + �

��1
R
"�"�j;t

"��1dF (")
i
, Q("�j;t) =

R
"<"�j;t

1
"dF ("), and H("

�
j;t) =

R
"�"�j;t

"�dF (").

The aggregate dynamics of the model are thus characterized by the following set of nonlinear

equations that solve for {Ct;Mt; Nt;Kt; Yt; Xt; f"�j;tgJj=1; fSjtgJj=1; fMjtgJj=1}:

1

�j"
�
jt

= �(1� �s)Et
�t+1
�t

"
��
�j
R
�
"�j;t+1

�
+
X
`

(1� ��)
�`

� `R ("`;t+1)

#
(94)

Mj;t =
G("�j;t)�R

"�dF
�
[
P
� `�

�
` ]
���1j Yt � (1� �s)

Sj;t�1
�j

Q("�j;t) (95)

Sj;t = ��
Yt�R

"�dF
�
[
P
� `�

�
` ]

��j
� � 1H("

�
j;t) + ��(1� �s)[1� F ("�j;t)]Sj;t�1 +

�
1� ��

�
St (96)

Yt +
X

� jSj;t = (1� �s)
X

� jSjt�1 +Xt: (97)

Mt =
X

� jMjt (98)

aN

t = (1� �) �

Mt

Nt
C��t (99)

C��t = �Et

�
��
Mt+1

Kt+1
+ 1� �k

�
C��t+1: (100)

Ct +Kt+1 � (1� �k)Kt =
1

P
Yt; (101)
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Mt = AtK
�
t N

1��
t : (102)

In the steady state, we have

1

�j"
�
j

= � (1� �s)
"
��
�j
R("�j ) +

X
`

(1� ��)
�`

� `R("
�
`)

#
: (103)

Assuming Pareto distribution for ", we have

R("�j ) =
�

� + 1
[1�

�
"�j
����1

] +
�
"�j
����1

=
� +

�
"�j

����1
� + 1

: (104)

Further, assuming J = 2 and that �j takes two values, f�h; �lg. The two cuto¤ f"�h; "�l g can then

be solved jointly from the following two equations:

1

�h"
�
h

1

� (1� �s)
=

� + ("�h)
���1

� + 1

�� + (1� ��)�h
�h

+
� + ("�l )

���1

� + 1

(1� ��)� l
�l

(105)

1

�l"
�
l

1

� (1� �s)
=

� + ("�h)
���1

� + 1

(1� ��)�h
�h

+
� + ("�l )

���1

� + 1

(1� ��)� l + ��
�l

: (106)
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