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I. Introduction

In the U.S. economy we observe that house prices fluctuate more than house rents and

that price-rent fluctuations tend to move with business cycles. Figure 1 shows that, over

the past twenty five years, the time series of house price-rent ratios not only display a large

volatility, but also tend to move together with the time series of output. Nothing illustrates

such empirical evidence better than the impulse responses of output, house price, and house

rent from an estimated Bayesian vector autoregression (BVAR) model with the recursive

ordering suggested by Sims (1980) and Christiano, Eichenbaum, and Evans (2005). The

responses, displayed as a 3 × 3 matrix of graphs in Figure 2, evince three important facts.

First, output, house price, and house rent all have large hump-shaped responses (the three

graphs along the diagonal of the graph matrix).1 Second, the house price tends to comove

with output (the first two graphs in the second column). Third, the house price fluctuates

more than not just output (comparing the second graph in the second column to the first

two graphs in the first row) but also house rent (comparing the last two graphs in the graph

matrix). How to account for these salient observations in a tractable real business cycle

(RBC) model has been a central but challenging issue in macroeconomics.

In recent papers Iacoviello (2005) and Iacoviello and Neri (2010) explain co-movements

between house prices and consumption expenditures and Liu, Wang, and Zha (2013) explore

co-movements between land prices and investment. As in much of the asset-pricing literature,

the dynamic general equilibrium models studied by these authors imply that the house price is

the discounted present value of future rents and thus both price and rent move in comparable

magnitude. This implication does not square with the key fact in the housing market: the

house price is much more volatile than the house rent.

In this paper we argue that this fact is a key to understanding the dynamic interactions

between house prices and real business cycles. We build this argument in a model that is

based on the primitive assumption of limited commitment by a productive firm to finance its

working capital. We begin with a simple model without capital in which there is a continuum

of heterogeneous firms with idiosyncratic productivity shocks. Firms trade housing units;

their assets are in the form of real estate. A productive firm borrows from households to

finance its working capital in the form of trade credit with a promise to repay the loan after

the production takes place. Because the firm may choose to renege on its payment promise,

an incentive compatibility constraint is imposed to resolve the limited enforcement problem.

The optimal contract results in a liquidity constraint on how much of working capital the firm

is able to finance. We show that this endogenously-derived constraint is directly influenced

1The response of output in the first column of Figure 2 will eventually come down, so its hump shape is

even larger than the graph shows.
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by the difference between the house price and the discounted present value of house rents.

We call this difference the “liquidity premium.”

A rise in the liquidity premium relaxes the firm’s liquidity constraint and thus facilitates

firm’s production. The liquidity constraint is not always binding. A novel feature of our

model is: whether a particular firm’s liquidity constraint binds depends on both the nature

of the shock and the realization of a firm’s individual productivity. A shock that raises the

liquidity premium simultaneously raises the threshold of the productivity level above which

firms choose to produce until their liquidity constraint binds. A rise in such a cutoff level, in

turn, weeds out unproductive firms and induces highly productive firms to function. In the

aggregate it raises the total factor productivity (TFP). Such a dynamic interaction between

the liquidity premium and endogenous TFP is the key crux of our paper.

To test the implications of our theory, we extend it to a medium-scale dynamic general

equilibrium model that is fit to the U.S. time series. We find that traditional business-cycle

shocks, such as shocks to technology, housing demand, and labor supply, cannot explain

price-rent fluctuations in magnitude comparable to the observed time series. A shock to

the liquidity premium, by contrast, accounts for the three observed facts delineated at the

beginning of the introduction section: 1) the hump-shaped responses of output and the house

price; 2) the comovement of output and the house price; and 3) the large volatility of the

house price relative to both output and the house rent. Our estimation indicates that a

liquidity premium shock explains not only most of the price-rent fluctuation but also 30%

of the aggregate output fluctuation over a six-year forecast horizon.

There are two important strands of literature relevant to our analysis. One strand focuses

on the housing market by analyzing the rise and fall of house prices relative to house rents

(Campbell, Davis, Gallin, and Martin, 2009; Piazzesi and Schneider, 2009; Caplin and Leahy,

2011; Burnside, Eichenbaum, and Rebelo, 2011; Pintus and Wen, 2013). Another strand of

literature analyzes the impact of financial frictions on the measured TFP (Jermann and

Quadrini, 2007; Jeong and Townsend, 2007; Amaral and Quintin, 2010; Buera, Kaboski,

and Shin, 2011; Miao and Wang, 2012; Gilchrist, Sim, and Zakraj̆sek, 2013; Buera and

Shin, 2013; Liu and Wang, 2014; Midrigan and Xu, 2014; Moll, Forthcoming). This strand

of literature is too large for us to list every relevant paper. Restuccia and Rogerson (2013)

have an excellent review of the literature.2 A general view is that financial frictions can cause

resource misallocation and therefore TFP losses. Many important papers in this literature

focus on a steady state analysis and on the implications for growth and development.

Our paper is more closely related to Buera and Moll (2013), who study the role of shocks

to collateral constraints (or credit crunch) in business cycles.3 They show that a credit

2See other papers in the special issue of the Review of Economic Dynamics, volume 16, issue 1, 2013.
3Jermann and Quadrini (2012) also study the impact of this shock on business cycles.
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crunch results in a decrease of the cutoff productivity level above which firms are active.

The implication of this result is that there is an entry of unproductive firms, causing a drop

in TFP in recessions. This result is consistent with the evidence provided by Kehrig (2011),

who documents that the dispersion of productivity in U.S. durable manufacturing firms is

greater in recessions than in booms, implying a relatively higher share of unproductive firms

in recessions.

Our paper places a different emphasis on the role of endogenous TFP dynamics. We focus

on understanding the business-cycle properties of observed large price-rent fluctuations in

the housing market. Unlike many papers in the literature on financial frictions, the liquidity

constraint in our paper is derived from the optimal contract with the primitive assumption of

limited commitment (Kehoe and Levine, 1993; Alvarez and Jermann, 2000; Albuquerque and

Hopenhayn, 2004). A shock that moves the liquidity premium affects the liquidity constraint

and provides the main source of endogenous TFP fluctuations.

By contrast, a housing demand shock emphasized in the previous literature cannot explain

the observed price-rent dynamics because it moves both the house rent and the house price

in similar magnitude. Once the house rent is explicitly taken into account in estimation, a

housing demand shock plays almost no role in generating business cycles. Our new theoretical

framework offers key intuition for how a shock that moves the liquidity premium can be

transmitted to the real economy through endogenous TFP.

The paper is organized as follows. In Section II, we construct a simple theoretical frame-

work that can be easily understood. This framework lays a foundation for our medium-scale

empirical model. In Section III, we develop key intuition for the link between price-rent

dynamics and aggregate fluctuations. In Section IV, we extends the simple model to a

medium-scale dynamic general equilibrium model that aims to fit to the U.S. time series.

In Section V, we discuss the empirical results from the estimated model. In Section VI, we

discuss the propagation mechanism that is present in the medium-scale model but is lacking

in the simple model. Section VII concludes the paper.

II. A Simple Model Without Capital

In this section we present a simple model without capital to obtain a closed-form solution

up to first-order approximation. The closed-form results, discussed in Section III, enable us

to illustrate the key mechanism that drives the link between output fluctuations and price-

rent dynamics. Proofs of all the propositions in this section are provided in Appendix A.

II.1. The Economy. The economy is populated by the representative household and a

continuum of firms.
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Households. The representative household maximizes the lifetime utility function

E0

∞∑
t=0

βtΘt

(
logCt + ξt (hrt + hot)−

N1+ν
t

1 + ν

)
,

where Ct represents consumption, Nt represents labor supply, hrt represents rented housing

units, and hot represents purchased housing units. The parameters β ∈ (0, 1) and 1/ν > 0

represent the subjective discount factor and the Frisch elasticity of labor supply, respectively.

Following Smets and Wouters (2007), Primiceri, Schaumburg, and Tambalotti (2006), and

Albuquerque, Eichenbaum, and Rebelo (2012), we introduce an intertemporal shock, Θt,

that influences the discount factor. We follow Iacoviello and Neri (2010) and Liu, Wang,

and Zha (2013) and introduce an intratemporal shock, ξt, that influences the demand for

housing. Let θt+1 = Θt+1/Θt. Both θt and ξt are assumed to follow an AR(1) process with

log θt+1 = ρθ log θt + σθεθt+1, (1)

where σθ > 0, |ρθ| < 1, and εθt+1 is an i.i.d. normal random variable, and

log ξt+1 = (1− ρξ) log ξ̄ + ρξ log ξt + σξεξt+1, (2)

where σξ > 0,
∣∣ρξ∣∣ < 1, and εξt+1 is an i.i.d. normal random variable.

The household’s intertemporal budget constraint is given by

Ct + rhthrt + pt (hot+1 − hot) = wtNt +Dt, t ≥ 0,

where rht represents the house rent, pt is the house price, wt is the wage rate, and Dt is the

dividend income. We assume that the household does not initially own any housing unit

(i.e., hot = 0 when t = 0) and faces the short-sales constraint hot+1 ≥ 0 for all t. Assume

that houses do not depreciate.

We obtain the following first-order conditions:

rht =
Θtξt
Λt

, (3)

ΘtN
ν
t

Λt

= wt, (4)

and

pt = βEt
Λt+1

Λt

(pt+1 + rht) +
πt
Λt

, (5)

where

Λt =
Θt

Ct
(6)

is the marginal utility of consumption, and πt ≥ 0 is the Lagrange multiplier associated with

the short-sales constraint hot+1 ≥ 0 with the complementary slackness condition πthot+1 = 0.

Equation (3) indicates that the house rent is equal to the marginal rate of substitution

between housing services and consumption. Equation (4) states that the wage rate is equal
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to the marginal rate of substitution between leisure and consumption. Equation (5) is the

asset-pricing equation for housing.

Firms. Each firm i ∈ [0, 1] owns a constant-returns-to-scale technology that produces

output yit using labor input nit according to

yit = aitAtn
i
t,

where ait represents an idiosyncratic productivity shock drawn independently and identically

from a fixed distribution with pdf f and cdf F on (0,∞), and At represents an aggregate

technology shock that follows the AR(1) process

logAt+1 = ρa lnAt + σaεat+1,

where σa > 0, |ρa| < 1, and εat+1 is an i.i.d. normal random variable. Firm i maximizes its

expected discounted present value of dividends

maxE0

∞∑
t=0

βtΛt

Λ0

dit, (7)

where dit denotes dividends and βtΛt/Λ0 is the household’s stochastic discount factor.

Firm i hires labor and trades and leases housing units. In each period t, prior to the sales

of output and housing units, firm i must borrow to finance working capital of wage bills.

Households extend trade credit to the firm in the beginning of period t and allows it to pay

wage bills at the end of the period using revenues from sales of output and housing units.

The firm’s flow-of-funds constraint is given by

dit + pt(h
i
t+1 − hit) = aitAtn

i
t − wtnit + rhth

i
t, t ≥ 0, with hi0 given. (8)

Firms are not allowed to short-sell houses so that hit+1 ≥ 0 for all t.

A key assumption of our model is that contract enforcement is imperfect. The firm has

limited commitment and may choose not to pay wage bills. In such a default state, the firm

would retain its production revenues aitAtn
i
t as well as its house holdings hit. But the firm

would be denied access to financial markets in the future. In particular, it would be barred

from selling any asset holdings for profit and from obtaining loans for working capital.4

In the default state, since the firm would have no access to working capital, it would

be unable to produce. In short, the firm would be in autarky. Let V a
t+1(h

i
t) denote the

continuation value for firm i that chooses to default in period t with house holdings hit. Let

Vt(h
i
t, a

i
t) denote firm i’s value function.5 The firm has no incentive to default on the trade

4To focus on the role of working capital and make our economic mechanism transparent, we abstract from

intertemporal loan markets. An introduction of such intertemporal elements would complicate the model a

great deal without changing our key analytical and empirical results in this paper.
5The value function depends on aggregate state variables as well. We omit these state variables to keep

notation simple.
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credit if and only if the following incentive compatibility constraint holds:

Vt
(
hit, a

i
t

)
≥ aitAtn

i
t + rhth

i
t + βEt

Λt+1

Λt

V a
t+1(h

i
t), (9)

where the left-hand side of the inequality is the no-default value and the right-hand side

gives the default value. Since V a
t+1(h

i
t) is equal to the sum of the rental value in period t+ 1

and the expected discounted present value of future rents, we have

βEt
Λt+1

Λt

V a
t+1(h

i
t) = path

i
t, (10)

where pat denotes the expected discounted present value of future rents (per housing unit)

pat ≡ Et

∞∑
τ=1

βτ
Λt+τ

Λt

rht+τ = βEt
Λt+1

Λt

(
pat+1 + rht+1

)
. (11)

Firm i’s problem is to solve the Bellman equation

Vt(h
i
t, a

i
t) = max

nit,h
i
t+1≥0

dit + βEt
Λt+1

Λt

Vt+1(h
i
t+1, a

i
t+1), (12)

subject to (8) and (9).

II.2. Liquidity Constraint and Asset Pricing. One significant feature of our model is

that the incentive constraint (9) gives rise to an endogenous liquidity constraint that depends

on the liquidity premium for housing, as stated as follows.

Proposition 1. The value function takes the form Vt(h
i
t, a

i
t) = vt(a

i
t)h

i
t, where vt(a

i
t) satisfies

pt = βEt
Λt+1

Λt

vt+1

(
ait+1

)
. (13)

The incentive compatibility constraint (9) is equivalent to

wtn
i
t ≤ (pt − pat )hit ≡ bth

i
t, (14)

where we define the liquidity premium bt as

bt ≡ pt − pat ≥ 0.

The linear form of the value function in Proposition 1 follows directly from the constant-

returns-to-scale technology. Equation (13) is an equilibrium restriction on the house price.

If pt > βEt
[
vt+1

(
ait+1

)
Λt+1/Λt

]
, firm i would prefer to sell all housing units, hit+1 = 0. All

other firms would not hold housing units because the preceding inequality holds for any i

as ait is i.i.d. This would violate the market-clearing condition for the housing market. If

pt < βEt
[
vt+1

(
ait+1

)
Λt+1/Λt

]
, all firms would prefer to own housing as much as possible,

which again violates the market-clearing condition.



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 7

The pricing restriction (13) is essential to achieving the interpretive form (14) of the

liquidity constraint. Using the Bellman equation (12), we can rewrite the incentive constraint

(9) as

dit + βEt
Λt+1

Λt

Vt+1(h
i
t+1, a

i
t+1) ≥ aitAtn

i
t + rhth

i
t + βEt

Λt+1

Λt

V a
t+1(h

i
t).

Given the value function and equations (8), (10), and (13), we can rewrite this constraint as

aitAtn
i
t − wtnit + rhth

i
t + pth

i
t ≥ aitAtn

i
t + (rht + pat )h

i
t.

Simplifying the proceeding inequality yields the constraint (14).6 The left-hand side of

(14) is the cost of working capital (wage bills); the right-hand side is the liquidity value.

Housing provides liquidity for firms to finance working capital and thus commands a liquidity

premium.

The key idea of this paper is that the liquidity premium provided by housing facilitates

production.7 The higher the premium, the more relaxed the liquidity constraint. A credit

expansion allows firms to finance more working capital, hire more workers, and produce

higher output. Relevant questions are: what factors influence the liquidity premium? And

how quantitatively important are such premia in business cycles? As will be discussed in

Section III, the shock process governing θt not only is a principal force that drives the

fluctuation of liquidity premium but also plays a significant role in shaping business cycles.

We call θt a “liquidity premium shock.”

Proposition 1 enables us to solve the firm’s decision problem and obtain asset-pricing

equations for determining house prices.

Proposition 2. Firm i’s optimal labor choice is given by

nit =

{
bthit
wt

if ait ≥ a∗t

0 otherwise
, (15)

where a∗t ≡ wt/At. The house price is determined by the two asset-pricing equations

pt = βEt
Λt+1

Λt

[
rht+1 + pt+1 + bt+1

∫ ∞
a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]
, (16)

and

bt = βEtbt+1
Λt+1

Λt

[
1 +

∫ ∞
a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]
. (17)

6The constraint (14) can be interpreted as an endogenous credit constraint of the Kiyotaki and Moore

(1997) type, such that wtn
i
t ≤ λtpthit where λt = bt/pt is endogenously determined.

7He, Wright, and Zhu (2013) and Miao, Wang, and Zhou (2014) study the role of the liquidity premium

in the house price in theoretical models with multiple equilibria. This is not the focus of our paper.
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Due to constant-returns-to-scale technology, only firms with ait ≥ a∗t employ labor and

produce output. This property implies that the liquidity constraint (14) is not always bind-

ing. It binds for only productive firms that borrow to finance their wage bills. The cutoff

productivity level a∗t for determining the binding liquidity constraint varies with the house

price, delivering an essential role of liquidity premia in business cycles.

Equations (16) and (17) show that the house price is positively influenced by not only the

expected discounted present value of rents but also the liquidity premium. This premium in

turn depends on the next-period credit yield for all productive firms:∫ ∞
a∗t+1

a− a∗t+1

a∗t+1

f(a)da. (18)

It follows from (15) that one-dollar liquidity provided by one housing unit in the next period

allows firm i to hire 1/wt+1 units of labor when ait+1 ≥ a∗t+1. This generates the average

profit of
(
ait+1At+1/wt+1 − 1

)
=
(
ait+1/a

∗
t+1 − 1

)
dollars when ait+1 ≥ a∗t+1. The credit yield

in (18) reflects the average profit generated by one-dollar liquidity.

II.3. Equilibrium. We consider the interior equilibrium in which production takes place,

labor supply Nt is positive, and the house price premium bt is positive.8

Proposition 3. For the interior equilibrium, the household’s optimal choice is not to own

housing units, i.e., hot+1 = 0 for all t.

It follows from equations (5) and (16) that the Lagrange multiplier πt is positive and re-

flects the liquidity premium when bt > 0 for all t. By the complementary slackness condition,

we deduce that hot+1 = 0 for all t. We normalize the house supply to unity. In equilibrium,

all markets clear such that∫
nitdi = Nt, hot = 0,

∫
hitdi = hrt = 1,

∫
yitdi = Yt = Ct.

The household’ dividend income is Dt =
∫ 1

0
ditdi. The following proposition summarizes the

equilibrium dynamics of our model.

Proposition 4. The equilibrium system is given by nine equations (3), (4), (11), (16), (17),

a∗t = wt/At, Yt = Ct,

Yt = AtNt

∫∞
a∗t
af(a)da

1− F (a∗t )
, (19)

wtNt = (1− F (a∗t ))bt, (20)

for nine variables {rht} , {wt} , {Nt} , {Yt} , {Ct} , {a∗t} , {pat } , {pt} , and {bt} .
8There is a trivial equilibrium such that bt = 0 for all t. In this trivial case, no production would take

place. The equilibrium with bt > 0 for all t is unique.
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We need only to show how to derive (19) and (20). Using a law of large numbers, we

obtain (20) by aggregating (15). To derive (19), we first aggregate individual firm production

functions by using (15) in Proposition 2. By a law of large numbers we have

Yt = At

∫ 1

0

aitn
i
tdi =

Atbt
wt

∫ ∞
a∗t

af(a)da.

We obtain equation (19) by using equation (20) to eliminate wt from the preceding equation.

III. Economic Mechanism: An Illustration

What is the economic mechanism that links the financial sector to the real sector in our

model? To answer this key question, we need both a shock that triggers a change in the

cutoff productivity level a∗t and an economic mechanism linking the liquidity premium (the

difference between the market price of house and the discounted present value of rents, i.e.,

bt = pt − pat ) to real aggregate variables such as output and hours. It turns out that a

shock to the liquidity premium, θt, is the primary shock driving the fluctuation of the cutoff

productivity level a∗t . In Section III.1 we focus exclusively on the mechanism that transmits

this shock to both the financial sector and the real sector. In Section III.2 we assess the

importance of a liquidity premium shock in comparison to other shocks.

III.1. Intuition. A novel feature of our model, relative to the empirical literature on sto-

chastic dynamic general equilibrium (DSGE) modeling, is that the cutoff productivity level

a∗t is endogenous and plays a crucial role in accounting for the dynamic links between the

house price, the house rent, and aggregate real variables. We first demonstrate that a∗t affects

the real sector through TFP and labor reallocation. Equation (19) shows that our model

generates endogenous TFP defined as

TFPt =

∫∞
a∗t
af(a)da

1− F (a∗t )
. (21)

A rise in a∗t discourages less efficient firms from production and induces more efficient firms

to produce. As a result, the TFP increases with the cutoff productivity level a∗t .

Dividing by wtNt on the two sides of equation (19) and using a∗t = At/wt, we derive

Yt =

∫∞
a∗t

a
a∗t
f(a)da

1− F (a∗t )
wtNt. (22)

This equation shows that aggregate output exceeds the factor income because firms make

positive profits due to financial frictions. Labor is reallocated to more productive firms and

the marginal product of labor for each firm is not equal to the wage rate.
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Eliminating wt from equations (4) and (22) with Ct = Yt and using (6), we derive the

labor-market equilibrium condition

N1+ν
t =

1− F (a∗t )∫∞
a∗t

a
a∗t
f(a)da

. (23)

An increase in a∗t has three effects on Nt. First, it raises endogenous TFP, which increases the

profit markup over the labor cost by (22). Firms demand less labor, ceteris paribus. Second,

if we hold endogenous TFP fixed, it follows from (22) that the higher the cutoff productivity

level, the less the profit markup. This selection effect increases demand for labor. Third,

labor supply is reduced due to the wealth effect, as in the standard RBC model. The net

effect on equilibrium labor hours Nt is ambiguous. When we use the estimated parameter

values from our medium-scale empirical model developed in Section IV, labor hours decrease

for the simple model but increase for the medium-scale model.

We use the top panel of Figure 3 to illustrate how a rise of the cutoff productivity level

a∗t affects output and hours in equilibrium. The production line, representing the aggregate

production function (19), is positively sloped on the Nt-Yt plane. The vertical line on the

plane represents equation (23). These two lines determine equilibrium output and hours

for a given cutoff productivity level a∗t . In plotting these labor-output lines, we treat other

factors, such as a∗t and a liquidity premium shock, as potential shifters. We assume that the

initial equilibrium (Point A) is at the steady state.

Consider a liquidity premium shock that raises the cutoff productivity level a∗t . A rise

in a∗t induces firms whose productivity is higher than a∗t to produce. As a consequence,

endogenous TFP increases and the production line shifts upward. At the same time, the

labor-market line also shifts. In Figure 3 we assume that the labor-market line shifts to the

left (we show how this can happen in Section III.2). As long as the effect of endogenous TFP

is sufficiently strong, the shift in the production line dominates the shift in the labor-market

line. As a result, output rises while hours fall (from Point A to Point B in Figure 3).

The mechanism illustrated in the top panel of Figure 3 for the real sector is only one side

of the story in our model. The other is the essential role of liquidity premia in facilitating

production. Firms would be unable to produce if they failed to acquire liquidity for financing

working capital. It is clear from the liquidity constraint (14) that the finance of working

capital depends on the liquidity premium bt.

A key result of our model is that a rise in the cutoff productivity level a∗t raises the liquidity

premium bt that is necessary for production. The bottom panel of Figure 3 illustrates

the mechanism for understanding this result. The asset-pricing curve on the a∗t -bt plane

represents the asset-pricing equation (17) for the liquidity premium. In Section III.2, we

show that a liquidity premium shock that raises the current cutoff productivity level a∗t also

raises both the liquidity premium bt and the future cutoff productivity level a∗t+1. According
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to (18), the future credit yield falls as a∗t+1 rises. Thus the asset-pricing curve describing

(17) is downward sloping.

Eliminating Nt from (19) and (20) and using a∗t = wt/At, we can derive

bt

∫
a∗t

a

a∗t
f(a)da = Yt. (24)

The curve that describes the relationship between a∗t and bt in (24) is upward sloping. Since

equation (24) is derived from the liquidity constraints, we call this upward-sloping curve the

“liquidity-constraint curve.” The two curves in the the bottom panel of Figure 3 determine

a∗t and bt jointly. Assume that Point A is at the steady state.

Now consider a liquidity premium shock that raises a∗t . The shock shifts the asset-pricing

curve outward. A rise in a∗t raises the TFP and consequently aggregate output (the top

panel of Figure 3). An increase in aggregate output shifts the liquidity-constraint curve

upward. The equilibrium moves from Point A to Point B (the bottom panel of Figure 3)

with the resultant increase of the liquidity premium bt higher than the increase of a∗t . The

large increase of bt relaxes the liquidity constraint that is necessary to facilitate the output

increase from productive firms.

In summary, our theoretical framework is capable of generating not only the comovement

of asset prices and output but also the stronger response of asset prices than the response of

output (as we observe in Figure 1).

III.2. Assessing the Importance of a Liquidity Premium Shock. There are three

shocks in this simple economy: θt, At, and ξt. The key to understanding how these shocks

influence price-rent dynamics and their impact on the aggregate economy is to analyze how

these shocks affect the cutoff productivity level a∗t . For this model, we are able to obtain a

closed-form solution to the log-linearized equilibrium system around the deterministic steady

state. We use the closed-form solution to show that 1) a shock to the liquidity premium, θt,

is the only shock that drives the fluctuation of cutoff productivity a∗t and 2) the other two

shocks cannot generate the magnitude of price-rent dynamics as observed in the data. We

then use the closed-form solution to verify the intuition developed in the preceding section.

Denote x̂t = log (xt)− log(x), where xt is any variable of study and x is the corresponding

deterministic steady state of xt. The log-linearized expression for (21) is

T̂FP t =
ηµ

1 + µ
â∗t , (25)

where

η ≡ a∗f(a∗)

1− F (a∗)
> 0
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denotes the steady-state hazard rate and

µ =

∫∞
a∗

a
a∗
f(a) da

1− F (a∗)
− 1 > 0.

Hence the log-linearized equations for (19) and (23) are

Ŷt = N̂t + Ât + T̂FP t, (26)

N̂t = − 1

1 + ν

µη − (1 + µ)

1 + µ
â∗t . (27)

These two equations give the log-linearized version of the production line and the labor-

market line in Figure 3. Whenever µη > (1 + µ),9 an increase in a∗t shifts the labor-market

line to the left up to the first-order approximation.

From (24) we derive the log-linearized equation

b̂t = Ŷt +
η + 1 + µ

1 + µ
â∗t . (28)

The log-linearized equation for (17) is

b̂t − Ŷt = Et

(
b̂t+1 − Ŷt+1 + θ̂t+1

)
− (1− β) (1 + µ)

µ
Etâ

∗
t+1. (29)

The preceding two equations give the log-linearized version of the liquidity-constraint curve

and the asset-pricing curve in Figure 3. Using (28) and (29) to eliminate b̂t−Ŷt and b̂t+1−Ŷt+1,

we obtain

â∗t = ρθ
1 + µ

η + 1 + µ
θ̂t +

[
1− (1− β)

1 + µ

µ

1 + µ

η + 1 + µ

]
Etâ

∗
t+1.

Solving this equation leads to

â∗t = ρθ
1 + µ

η + 1 + µ

1

1− ρθκ
θ̂t, (30)

where

κ = 1− (1− β)
1 + µ

µ

1 + µ

η + 1 + µ
< 1.

From equations (25), (26), and (27) we deduce

Ŷt = Ât +
1

1 + ν

(
1 +

νηµ

1 + µ

)
â∗t . (31)

This equation indicates that, even though hours Nt may decrease with a∗t , output Yt always

increases with a∗t up to the first-order approximation because the upward shift of the pro-

duction line dominates the leftward shift of the labor-market line due to a large increase in

endogenous TFP.

One can see from equation (30) that both the aggregate technology shock At and the

housing demand shock ξt play no role in influencing the cutoff productivity level a∗t . To

9This condition is implied by the estimated values for our medium-scale model in Section V.
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gauge the magnitude of how these shocks are transmitted to asset prices and real aggregate

variables, we log-linearize equations (3), (11), and pt = pat + bt as

r̂ht = Ŷt + ξ̂t, (32)

p̂at = Et

[
θ̂t+1 + Ŷt − Ŷt+1 + (1− β)r̂ht+1 + βp̂at+1

]
, (33)

p̂t =
pa

p
p̂at +

(
1− pa

p

)
b̂t, (34)

where we use the steady-state equilibrium conditions to derive

pa

p
=

ξ̄(1 + µ)

ξ̄(1 + µ) + µ
.

Substituting (32) into (33) and solving p̂at − Ŷt forward, we obtain

p̂at = Ŷt +
ρθ

1− βρθ
θ̂t +

(1− β)ρξ
1− βρξ

ξ̂t. (35)

From equations (25), (27), and (30), one can see that the aggregate technology shock At

does not exert any influence on T̂FP t, â
∗
t , and N̂t. Thus the At shock would have the same

one-for-one effect on output Yt [equation (31)], the liquidity premium bt [equation (28)], the

house rent rht [equation (32)], the expected discounted present value of rents p̂at [equation

(35)], and the house price p̂t [equation (34)]. Because the house price is much more volatile

than the house rent and output in the data, the aggregate technology shock in our model

cannot be the main source for generating the link between price-rent dynamics and output

fluctuations.

As in Liu, Wang, and Zha (2013), the housing demand shock ξt influences the house rent

through equation (32) and in turn the house price through equation (34). But Liu, Wang,

and Zha (2013) abstract from the central and challenging issue addressed in this paper: the

fluctuations of house prices relative to those of house rents over business cycles. In our model,

since the housing demand shock does not affect the liquidity premium, it has no influence on

hours and output. Moreover, a one percent increase in the housing demand shock ξt raises

the house rent by one percent, but raises the house price by less than one percent because

(1− β)ρξ
1− βρξ

pa

p
< 1.

Thus the housing demand shock is unable to generate price-rent dynamics observed in the

data (Figure 1).

By contrast, it follows from (30) that the liquidity premium shock θ̂t is the only shock that

influences cutoff productivity and therefore the TFP [equation (30)]. A positive liquidity

premium shock raises the cutoff productivity level â∗t . The increase of the cutoff productivity
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level â∗t raises endogenous TFP, causing aggregate output to rise [equations (26)]. In equi-

librium, the increase of the liquidity premium b̂t is greater than the increase of both output

and cutoff productivity, as shown in equation (28).

Figure 4 illustrates the quantitative importance of the dynamic impact of a liquidity

premium shock with the following parameterization:

ν = 1.023, η = 9.313, µ = 0.148, ξ̄ = 0.135, β = 0.994, ρθ = 0.95, σθ = 0.001.

Except for the values of ρθ and σθ, all other parameter values are taken from the estimates

presented in Section V. The values of ρθ and σθ are selected for the best visual effect without

altering the model’s implications. The top panel of Figure 4 shows that, in log value, the

response of the house price (the star line) is about ten times the response of the house

rent (the circle line) as well as the response of cutoff productivity (the dashed line). The

movement in the house price is mostly driven by the liquidity premium (the solid line). The

bottom panel of Figure 4 shows that the responses of output (the circle line) is most driven

by the response of endogenous TFP (the solid line).

These calibrated results are broadly consistent with the dynamics we observe in the data.

The model, however, is unable to generate hump-shaped responses, which are prominent fea-

tures in macroeconomic time series. To overcome this important shortcoming, we introduce

capital into our model in the next section in order to fit the actual data. The economic mech-

anism explained in this section, however, remains the key to understanding the empirical

results estimated from a more complicated structural model.

IV. A Tractable Medium-Scale Structural Model

In this section we build up a medium-scale dynamic general equilibrium model that aims

to fit the house price-rent data and other macroeconomic data in the U.S. economy. By

introducing capital, this medium-scale model is an expansion of the basic model developed

in Section II. Although the dynamics and equilibrium conditions are much more complicated,

all the intuition and insights discussed in Section II carry over to this medium-scale model.

We consider an economy populated by a continuum of identical households, a continuum

of competitive intermediate goods producers of measure unity, and a continuum of hetero-

geneous competitive firms of measure unity. The representative household rents out capital

and supplies labor to intermediate-goods producers. Firms use intermediate goods as input

to produce final consumption good. Financial frictions occur in the final-good sector.

IV.1. Households. The representative household maximizes the expected lifetime utility

E0

∞∑
t=0

Θtβ
t

[
log (Ct − γCt−1) + ξt logHt − ψt

N1+ν
t

1 + ν

]
, (36)
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where Ct represents aggregate consumption, Nt is the household’s total labor supply, and Ht

denotes housing services. The parameters β ∈ (0, 1) and γ ∈ (0, 1) represent the subjective

discount factor and habit formation. The variables θt ≡ Θt/Θt−1, ξt, and ψt are exogenous

shocks to liqudity premium, housing demand, and labor supply that follow AR(1) processes

(1), (2), and

logψt = (1− ρψ) log ψ̄ + ρψ logψt−1 + σψεψ,t,

where σψ > 0,
∣∣ρψ∣∣ < 1, and εψ,t is an i.i.d. standard normal random variable.

The household chooses consumption Ct, investment It, housing services Ht, capital uti-

lization rate ut, and bonds Bt+1, subject to the intertemporal budget constraint

Ct +
It
Zt

+
Bt+1

Rft

+ rhtHt ≤ wtNt + utrktKt +Dt +Bt, (37)

where Kt, wt, Dt, rkt, rht, and Rft represent capital, wage, dividend income, the rental

rate of capital, the house rent, and the risk-free interest rate.10 The variable Zt represents

an aggregate investment-specific technology shock that has both permanent and transitory

components (Greenwood, Hercowitz, and Krusell, 1997; Krusell, Ohanian, Ŕıos-Rull, and

Violante, 2000; Justiniano and Primiceri, 2008):

Zt = Zp
t vzt, Z

p
t = Zp

t−1gzt,

log gzt = (1− ρz) log ḡz + ρz log(gz,t−1) + σzεzt, (38)

log vzt = ρ
vz

log vz,t−1 + σvzεvz ,t, (39)

where |ρz| < 1,
∣∣ρva∣∣ < 1, σz > 0, σva > 0, and εz,t and εvz ,t are i.i.d. standard normal

random variables.

Investment is subject to quadratic adjustment costs (Christiano, Eichenbaum, and Evans,

2005). Capital evolves according to the law of motion

Kt+1 = (1− δ(ut))Kt +

[
1− Ω

2

(
It
It−1
− ḡI

)2
]
It, (40)

where δt ≡ δ(ut) is the capital deprecation rate in period t, ḡI denotes the long-run growth

rate of investment, and Ω is the investment adjustment cost parameter.

10If we allow households to trade housing units, their holdings will be zero given the short-sales constraint

shown in Section II. For notational simplicity, we set the household’s holdings of housing units to zero.
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IV.2. Intermediate-Goods Producers. There is a continuum of intermediate goods. Each

intermediate good j ∈ [0, 1] is produced by a continuum of identical competitive producers

of measure unity. The representative producer owns a constant-returns-to-scale technology

to produce good j by hiring labor Nt (j) and renting capital Kt (j) from households. The

producer’s decision problem is

max
Nt(j), Kt(j)

PXt(j)Xt (j)− wtNt(j)− rktKt(j), (41)

where Xt (j) ≡ AtKt (j)αNt (j)1−α and PXt (j) represents the competitive price of good j.

The aggregate technology shock At consists of permanent and transitory components (Aguiar

and Gopinath, 2007)

At = Aptνa,t, A
p
t = Apt−1gat,

log gat = (1− ρa) log ḡa + ρa log(ga,t−1) + σaεat,

log νa,t = ρva log νa,t−1 + σvaεva,t ,

where |ρa| < 1,
∣∣ρνa∣∣ < 1, σa > 0, σνa > 0, and εat and εva,t are i.i.d. standard normal

random variables.

IV.3. Final-Good Firms. There is a continuum of heterogeneous competitive firms. Each

firm i ∈ [0, 1] combines intermediate goods xit (j) to produce the final consumption good

with the aggregate production technology

yit = ait exp

(∫ 1

0

log xit(j)dj

)
, (42)

where ait represents an idiosyncratic productivity shock. Firm i purchases intermediate good

j at the price PXt (j). The total spending on working capital is
∫ 1

0
PXt(j)x

i
t(j)dj. The firm

finances working capital in the form of trade credit prior to the realization of its revenues yit.

Firm i buys and sells housing units as well as rents them out to households. The firm’s

income comes from profits and rents. Its flow-of-funds constraint is given by

dit + pt(h
i
t+1 − hit) = yit −

∫ 1

0

PXt(j)x
i
t(j)dj + rhth

i
t, t ≥ 0,with hi0 given. (43)

The firm’s objective (7) is to maximize the discounted present value of dividends.

In each period t, prior to sales of output and housing, firm i must borrow to finance its

input costs. Intermediate-goods producers extend trade credit to the firm at the beginning

of period t and allows it to pay input costs at the end of the period using revenues from

sales of output and housing. The firm has limited commitment and may default on the trade

credit. In the event of default, the firm would retain its production income yit as well as its

house holdings hit. But the firm would be denied access to financial markets in the future. In

particular, it would be barred from selling any asset holdings for profit and from obtaining
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loans for working capital. The following incentive compatibility constraint is imposed on the

firm’s optimization problem to make the contract self-enforceable:

Vt(h
i
t, a

i
t) ≥

(
yit + rhth

i
t

)
+ βEt

Λt+1

Λt

V a
t+1

(
hit
)
, all t, (44)

where Vt(h
i
t, a

i
t) denotes the firm’s value without default and V a

t (hit) denotes the firm’s value

in the default state. As discussed in Section II, equation (10) still holds.

IV.4. Equilibrium. The markets clear for the housing sector and the intermediate-goods

sector: ∫
hitdi = Ht = 1,

∫
xit(j)di = Xt (j) = AtKt (j)αNt (j)1−α .

Since the equilibrium is symmetric for intermediate-goods producers, we have

PXt(j) = PXt, Nt(j) = Nt, Kt(j) = utKt, Xt (j) = Xt = At (utKt)
αNt

1−α,

for all j. The household’s dividend income is Dt =
∫ 1

0
ditdi.

A competitive equilibrium consists of price sequences {wt, rht, rkt, pt, bt, Rft, PXt}∞t=0, al-

location sequences {Ct, It, ut, Nt, Yt, Bt+1, Kt+1, Xt}∞t=0 and a cutoff productivity sequence

{a∗t}
∞
t=0 , such that (1) given the prices, the allocations and cutoff productivity solve the

optimizing problems for the households, intermediate-goods producers, and final-good firms;

and (2) all the markets clear. Appendices B–D present all the details of characterizing and

solving the equilibrium.

V. Empirical Analysis

The purpose of building the medium-scale model in the preceding section is to explain

and understand, through the lenses of the structural model, house price-rent fluctuations

over U.S. business cycles. To this end, we take the Bayesian approach and fit the log-

linearized model to the six key U.S. time series over the period from 1987:Q1 to 2013:Q4:

the price of house, the rent of house, the quality-adjusted relative price of investment, real

per capita consumption, real per capita investment (in consumption units), and per capita

hours worked. Appendix E presents the detailed description of the data and Appendix F

provides the details of the estimation method.

V.1. Parameter Estimates. Our structural model fits the data remarkably well and is

competitive against the Minnesota-prior BVAR. The model’s marginal data density is 2, 082

in log value, while the BVAR’s marginal data density is 2, 078 in log value. Following Smets

and Wouters (2007), the empirical DSGE literature has used the Minnesota prior as the
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benchmark for the BVAR model.11 Along with 90% probability bounds, Table 1 reports the

estimates of key structural parameters and Table 2 reports the estimates of exogenous shock

processes.

According to Table 1, the estimated inverse Frisch elasticity of labor supply is about 1.0,

consistent with ranges of values discussed in the literature (Keane and Rogerson, 2011).

The estimated hazard rate η is high, implying both a significant heterogeneity in firms’

productivities and the importance of endogenous TFP. This large value, along with the

estimated value µ = 0.148 through steady state relationships, implies that the condition

µη > 1+µ is satisfied. The steady-state elasticity of capacity utilization δ′′/δ′ is 4.0 (greater

than the value discussed in the literature (Jaimovich and Rebelo, 2009)), suggesting that

the effect of capacity utilization on output fluctuations is small and that our model does not

have to rely on variable capacity utilization to fit the data. In a similar way, the estimated

habit formation γ and capital-adjustment cost Ω are very small in magnitude. These factors

are not a driving force for the dynamics of consumption and investment. The posterior

probability intervals reported in Table 1 indicate that all these structural parameters are

tightly estimated.

Table 2 reports the estimated persistence and standard-deviation parameters of exogenous

shock processes. Among all shocks, the liquidity premium shock is the most persistent

process. Other persistent shocks include the technology shock, the housing demand shock,

and the labor supply shock. But the estimated standard deviation for the liquidity premium

shock process is substantially smaller than those for all other shock processes. Indeed, the

unconditional standard deviation for the liquidity premium shock process is only 0.0058.

By contrast, the unconditional standard deviation is 0.0198 for housing demand, 0.0175 for

stationary aggregate technology, and 0.0770 for labor supply. According to the 90% error

bounds, the differences are both economically and statistically significant. The error bounds

for the estimated standard deviation of the liquidity premium shock process are particularly

tight. Such a small standard deviation implies that any large effects on asset prices and real

aggregate variables must come from the model’s internal propagation mechanism, which will

be discussed in Section VI.

V.2. Dynamic Impact. In this subsection we discuss the dynamic impact on key finan-

cial and real variables of four most relevant shocks: a liquidity premium shock, a housing

demand shock, a stationary technology shock, and a labor supply shock. The primary

11Sims and Zha (1998) propose a comprehensive prior that takes into account the feature of unit roots and

cointegration inherent in the data. Our medium-scale model does not fit to the data as well as the BVAR

with the Sims and Zha (1998) prior. Model comparison, however, is not the main purpose of our exercise as

we can always improve the fit by making the exogenous processes more complicated than the simple AR(1)

processes (see Smets and Wouters (2007)).
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empirical finding is as follows. Although the estimated volatility of a shock to the liquidity

premium is many times in magnitude less than the estimated volatilities of shocks to housing

demand, technology, and labor supply, it accounts for most of the interaction between price-

rent dynamics and real aggregate fluctuations. By comparison, shocks to housing demand,

technology, and labor demand are all unable to generate large price-rent fluctuations.

Table 3 reports variance decompositions by the contributions from these four shocks for

key financial and real variables (in log level) over the 24-quarter forecast horizon.12 The

stationary technology shock explains a majority of output fluctuations on impact (64.77%),

but over the longer horizon the liquidity premium shock dominates the technology shock in

explaining output fluctuations (reaching more than 30% at the end of the sixth-year horizon).

The labor supply shock explains most of the hours fluctuation but not much of the output

fluctuation. The housing demand shock affects only the house rent; and its contribution to

rent fluctuations declines steadily over time from 59% on impact to 20% at the end of the

forecast horizon. In Liu, Wang, and Zha (2013), the housing demand shock is important in

explaining fluctuations of real variables. Once one takes into account the observation that

the house price is more volatile than the house rent, a shock to housing demand no longer

plays a role in real business cycles.

Figure 5-8 report the impulse responses (in log level) to all four shocks. The estimated

dynamic response of the house rent to a housing demand shock is substantially higher than

the corresponding response of the house price, making the fluctuations in the house price in

relation to the rent inconsistent with the data (Figure 2 versus Figure 5). Moreover, since

the housing demand shock has no impact on the other variables in the model, we do not

display them in Figure 5. The intuition for this result has been explained in Section III.2.

Shocks to the labor supply and technology also fail to generate the price-rent fluctuation

in magnitude comparable to the data. As shown in Figures 6 and 7, a labor supply shock

produces simultaneous responses of rent and price almost one for one, while a technology

shock generates exactly one-for-one responses. A labor supply shock has a much stronger

impact on hours than a technology shock, but its dynamic impact on all other real variables

is weaker. The response of output to a labor supply shock comes mostly from the response

of hours, while a technology shock has a direct impact on output. Both shocks generate a

much weaker response of endogenous TFP than the output response.

By contrast, a shock to the liquidity premium drives most fluctuations in both endogenous

TFP and the house price without a significant effect on the rent fluctuation (Figure 8). Thus,

this shock is capable of generating a majority of price-rent fluctuations. These results are

12We do not report the error bounds on variance decompositions for reasons articulated in Sims and Zha

(1999). The error bands are best reported for the corresponding impulse responses.
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remarkable given the very small standard deviation of this shock process as compared with

other shock processes.

As explained in Section III, endogenous TFP is a primary transmission channel for the

significant effect of the liquidity premium on aggregate output to take place. A more impor-

tant factor is the strong propagation effect generated by a liquidity premium shock, as shown

in Figure 8. Despite our assumption that the liquidity premium shock process is AR(1), the

house price rises on impact and continues to rise over time in response to the shock. This

large hump-shaped response13 is generated entirely by the model’s internal mechanism, which

will be discussed in Section VI. The rent response is much smaller by comparison. As a

result, a shock to the liquidity premium generates large price-rent dynamics. The response

of endogenous TFP is strong on impact and stays elevated, while the response of aggregate

output exhibits a large hump shape. Unlike the calibrated simple model in Section III,

the response of hours here is positive. We will discuss the intuition behind this result in

Section VI.

In summary, a technology shock has a direct and significant effect on output, but it causes

endogenous TFP to fall (Figure 7). We will explain the latter result further in Section VI.

Even though there is a hump-shaped response of consumption, the output response rises on

impact and declines steadily (no hump shape). In comparison with the effect of a liquidity

premium shock, the investment response to a technology shock rises more significantly on

impact but declines more rapidly in subsequent periods (Figures 7 and 8). Labor supply

and housing demand shocks have even less impact on consumption, investment, and output

(Figures 5 and 6). Unlike a shock to the liquidity premium, these three shocks play almost

no role in the price-rent fluctuation over the business cycle.

V.3. Persistence and Volatility. The Introduction provides empirical evidence through

the lenses of the BVAR model. To be sure, the BVAR model we use does not identify any

fundamental economic shock but rather provides a formal way of summarizing reduced-form

empirical facts about volatility and persistence. One must therefore study all the columns

of Figure 2, as there are three distinct facts evinced by this figure. First, output, house

price, and house rent all have large hump-shaped responses, as shown by the diagonal of

the 3 × 3 matrix of graphs in Figure 2. For our structural model, such large hump-shaped

responses (especially the response of output) are identified as those to a liquidity premium

shock (Figure 8). A shock to aggregate technology leads to a hump-shaped response of the

house price, but the magnitude of volatility is too small compared to the price response to

a liquidity premium shock (Figure 7 versus Figure 8).

13It is hump-shaped because the response is near the peak at the end of the forecast horizon and will

eventually fall.
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The second fact is the comovement between the house price and output, as shown in the

first two graphs of the second column of Figure 2. Such a comovement can be generated

by our structural model and is indeed captured by the dynamic responses to a liquidity

premium shock (Figure 8). The third observation is that the house price is more volatile

than not only output but also house rent. This observation is explained by the dynamic

responses to a liquidity premium shock. The large response of the liquidity premium, as

shown in Figure 8, is a driving force behind the large response of the house price relative

to the small response of the house rent. Taking account of this salient fact has a profound

implication on how we identify both a transmission channel and a propagation mechanism

that are fundamentally different from what the previous literature that focuses on housing

demand shocks has shown.

One of our important findings is that the estimated standard deviation for the liquidity

premium shock process is considerably smaller than the estimated standard deviations for all

other shock processes. A natural question is how much of the observed volatility is attributed

to the liquidity premium shock. Table 4 reports the observed and model-generated volatilities

of output, the house price, and the house rent. Using the estimates of model parameters, we

simulate a sample of 112 periods (the same sample length as the data sample length) with

only liquidity premium shocks. We repeat the simulation 100,000 times and compute the

median volatility of output, the house price, and the house rent, along with 90% probability

bounds. According to the median simulation, liquidity premium shocks alone can account for

56% of the observed output volatility, 23% of the observed house-rent volatility, and about

100% of the observed house-price volatility. These results offer a different perspective than

the variance decomposition approach in gauging the significance of liquidity premium shocks

and how it matters for the observed volatility. They affirm one of our key empirical findings:

a liquidity premium shock is capable of generating a large house-price fluctuation without

having a large effect on the house rent and the shock also exerts considerable influence on

aggregate output fluctuation.

VI. Transmission Channel and Propagation Mechanism

Since all of our exogenous shocks are assumed to follow an AR(1) process, it is not sur-

prising that we have the monotone responses in the simple model discussed in Section III.

For our medium-scale structural model, therefore, it is all the more important to under-

stand the inherent mechanism that generates hump-shaped impulse responses of both asset

prices and real variables following a liquidity premium shock. With the presence of capital

accumulation, households are now able to postpone their consumption by accumulating pro-

ductive capital. This intertemporal substitution between current and future consumption
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contributes to the hump-shaped response of consumption even without habit (our estimate

of habit is very small). Such a result is not new in the RBC literature.

What is new is that our medium-scale structural model identifies the source that accounts

for the observed hump-shaped responses of the house price and output (Section V). Since our

estimate of investment-adjustment costs is negligible, its contribution to the hump-shaped

response of output is largely muted. Indeed, the dynamic response of output in response

to an aggregate technology shock is monotone (Figure 7). By comparison, a monotone

liquidity premium shock is capable of generating large hump-shaped responses of both asset

prices and aggregate output. What is the transmission channel and what is the propagation

mechanism?

To delve into intuitive answers, we begin with Figure 9. The figure plots the asset-pricing

curve and the liquidity-constraint curve, which represent equations (17) and (24). These two

equations continue to be the equilibrium conditions for our medium-scale structural model,

except

Λt =
Θt

Ct − γCt−1
− βγEt

Θt+1

Ct+1 − γCt
, (45)

and the cutoff productivity level a∗t is now determined in Appendix B. Now consider a

positive stationary shock to aggregate technology. Point A in Figure 9 represents the initial

equilibrium at the steady state. The technology shock increases aggregate output directly

and hence shifts the liquidity-constraint curve upward. The rise of output has a positive

wealth effect on consumption, shifting the asset-pricing curve upward as well. Since the

direct effect of the aggregate technology shock on output is larger than the indirect effect on

consumption, the cutoff productivity level declines and the equilibrium moves from Point A

to Point B on impact.

In the subsequent period, an increase of consumption as a result of intertemporal substi-

tution continues to shift the asset-pricing curve upward, but output drops (no hump shape)

because the technology shock begins to decline. The direct output effect shifts the liquidity-

constraint curve downward, resulting in a lower value of cutoff productivity and dampening

the increase of the liquidity premium. The equilibrium moves from Point B to Point C in Fig-

ure 9. Over time, the direct output effect continues to dominate and the liquidity premium

will begin to decline. Consequently, we see from Figure 7 the decline of cutoff productivity

and no hump shape of the output response, even though the responses of consumption and

the liquidity premium are hump-shaped.

By contrast, the dynamic impact of a positive liquidity premium shock presents a different

picture. Figure 10, similar to Figure 3, has two panels. The top panel plots the production

and labor-market curves. The bottom panel plots the asset-pricing and liquidity-constraint

curves. We use these two panels to illustrate how the financial sector interacts with the real

sector and how the interaction sheds light on the propagation mechanism that is lacking in
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Section III. The production curve describes aggregate output

Yt = (TFPt)At (utKt)
αN1−α

t . (46)

To derive the labor-market curve, we use the labor supply equation

Λtwt = ΘtψtN
ν
t (47)

and the labor demand equation

(1− α)Yt =

∫∞
a∗t

a
a∗t
f(a)da

1− F (a∗t )
wtNt (48)

to eliminate wt.
14 We then obtain the equation for the labor-market curve

N1+ν
t =

1− F (a∗t )∫∞
a∗t

a
a∗t
f(a)da

(1− α)YtΛt

Θtψt
. (49)

In contrast to Figure 3, the labor-market curve is upward sloping in Figure 10 because Yt

and Λt/Θt can no longer cancel each other out.

Suppose that the initial equilibrium is Point A at the steady state for both panels of Fig-

ure 10. According to equations (17) and (45), a positive shock delivers immediate impetus

to the liquidity premium, shifting the asset-pricing curve upward and raising cutoff produc-

tivity. A rise in cutoff productivity increases aggregate output through endogenous TFP as

the transmission channel. An increase in aggregate output causes the liquidity-constraint

curve to shift upward [equation (24)]. The direct effect of the liquidity premium shock on

asset prices dominates the indirect effect on aggregate output so that the net effect on cutoff

productivity is positive (Figure 9 vs. the bottom panel of Figure 10). The equilibrium moves

from Point A to Point B on impact, with an increase of both cutoff productivity and the

liquidity premium.

As an increase of cutoff productivity raises aggregate output and thus shifts the production

curve upward, it simultaneously shifts the labor-market curve upward so long as the term15

1

1− F (a∗t )

∫ ∞
a∗t

a

a∗t
f (a) da

increases with a∗t and the impact of Λt is relatively small. When the rise of the production

curve dominates the rise of the labor-market curve, both output and hours increase with

cutoff productivity a∗t and the equilibrium moves from Point A to Point B on impact (the

top panel).

In the simple model articulated in Section II, no matter how persistent the AR(1) process

of the liquidity premium shock is, one cannot obtain a hump-shaped response of either

14The preceding three equations are derived in Appendix B.
15As shown in Section III.2, if µη > (1 + µ), then this term increases with a∗t up to the first-order

approximation.
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house price or aggregate output. With capital accumulation in our medium-scale model,

it is optimal for households to postpone consumption for investment. Thus the hump-

shaped response of consumption leads to a further upward shift of the asset-pricing curve in

subsequent periods, pushing cutoff productivity higher. A higher cutoff productivity level,

in turn, leads to higher endogenous TFP and higher aggregate output. As a result of higher

aggregate output, the liquidity-constraint curve shifts further up, generating an even higher

liquidity premium. As long as the liquidity premium shock is very persistent as is seen in our

estimation, the effect on the asset-pricing curve is likely to continue to dominate the effect on

the liquidity-constraint curve, moving the equilibrium from Point B to Point C (the bottom

panel of Figure 10) with an increase in both liquidity premium and cutoff productivity.

At the same time, a higher cutoff productivity level shifts both the production curve and

the labor-market curve further upward to support higher aggregate output while hours begin

to decline, moving the equilibrium from Point B to Point C (the top panel of Figure 10). The

propagation mechanism described here generates hump-shaped responses of both aggregate

output and the liquidity premium. The real sector cannot be understood apart from the

financial sector—both panels of Figure 10 are necessary for understanding the interaction

between the two sectors.

VII. Conclusion

DSGE models studied in the previous literature have had difficulty in generating the result

that the house price is much more volatile than the house rent, as is observed in the data.

Overcoming this difficulty leads to a new economic mechanism that is fundamentally different

from the previous literature on the dynamic links between house prices and real aggregate

variables. The contribution of this paper is the development of such a mechanism that

accounts for not only the observed price-rent dynamics in the housing market but also their

impact on real business cycles. The mechanism is built on a dynamic general equilibrium

model that confronts the U.S. time series. The estimated medium-scale structural model fits

the data well, providing empirical support for the transmission channel and the propagation

mechanism developed in this paper.

To make the findings and the mechanism transparent, our model abstracts from many

other dimensions that merit further study in the future. One such dimension is the inclusion

of mortgage markets and intertemporal loans in the model. Another dimension for expanding

our model is the introduction of monetary and regulatory policies for studying potential roles

of the government. We hope that the mechanism developed in the paper lays the groundwork

for extending our model along these and other important dimensions.
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Table 1. Posterior distributions of structural parameters

Posterior estimates

Parameter Representation Mode Low High

ν Inverse Frisch 1.0229 0.6145 2.1178

η Hazard rate 9.3134 8.2581 12.899

δ′′/δ′ Capacity utilization 4.3031 1.6745 9.1139

γ Habit formation 0.1079 0.0332 0.2724

Ω Capital adjustment 0.0166 0.0040 0.0719

Note: “Low” and “high” denote the bounds of the 90% probability interval for each

parameter.

Table 2. Posterior distributions of shock parameters

Posterior estimates

Parameter Representation Mode Low High

ρz Permanent investment tech 0.1619 0.0880 0.2958

ρνz Stationary investment tech 0.0168 0.0154 0.6733

ρa Permanent neutral tech 0.9270 0.1803 0.9496

ρνa Stationary neutral tech 0.9273 0.8359 0.9401

ρθ Liquidity premium 0.9996 0.9973 0.9998

ρξ Housing demand 0.9380 0.8953 0.9730

ρψ Labor supply 0.9908 0.9758 0.9967

σz Permanent investment tech 0.0054 0.0046 0.0060

σνz Stationary investment tech 0.0001 0.0001 0.0018

σa Permanent neutral tech 0.0005 0.0004 0.0040

σνa Stationary neutral tech 0.0065 0.0058 0.0076

σθ Liquidity premium 0.0002 0.0001 0.0002

σξ Housing demand 0.0069 0.0063 0.0079

σψ Labor supply 0.0104 0.0083 0.0170

Note: “Low” and “high” denote the bounds of the 90% probability interval for each

parameter.
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Table 3. Variance decompositions (%) of key financial and real variables

Shock to

Horizons (quarters) Housing Labor Technology Liquidity

Price-rent ratio

1 5.89 0.00 0.00 94.11

4 4.97 0.00 0.00 95.03

8 4.02 0.00 0.00 95.98

16 2.78 0.00 0.00 97.22

24 2.05 0.00 0.00 97.95

Rent

1 59.52 10.69 16.56 3.68

4 53.20 12.08 17.89 5.21

8 43.71 14.00 20.35 8.23

16 29.07 16.20 20.58 13.99

24 19.85 16.62 17.51 18.09

Output

1 0.00 15.84 64.77 19.19

4 0.00 16.96 59.68 22.04

8 0.00 17.99 52.47 25.32

16 0.00 18.48 38.82 29.69

24 0.00 17.68 28.36 31.65

Cutoff productivity

1 0.00 0.12 2.52 96.19

4 0.00 0.14 2.18 96.67

8 0.00 0.11 1.53 97.64

16 0.00 0.08 0.86 98.66

24 0.00 0.06 0.57 99.09

Hours

1 0.00 80.50 11.82 2.52

4 0.00 82.19 10.40 2.75

8 0.00 85.85 7.96 2.61

16 0.00 90.20 5.13 2.27

24 0.00 92.24 3.84 1.99

Note: Variance decompositions attributed to shocks to housing demand, labor supply,

stationary aggregate technology, and liquidity premium.
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Table 4. Key data volatilities explained by the liquidity premium shock (%)

Liquidity premium shock

Volatility Data Median Low High

std (∆Yt) 0.744 0.428 0.382 0.478

std (∆pt) 2.727 2.786 2.485 3.103

std (∆rh,t) 0.556 0.176 0.154 0.204

Note: “Low” and “high” denote the bounds of the 90% probability interval.
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Figure 1. The time series of the log price-rent ratio in the U.S. housing sector

(the left scale) and the time series of log output in the U.S. economy (the right

scale).
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Figure 2. Impulse responses of output, house price, and house rent from an

estimated BVAR model with Sims and Zha (1998)’s prior and with four lags.

All the variables are expressed in log level. The shocks are orthogonalized with

output ordered first, the house price second, and the house rent third. The

solid lines represent the estimated results and the dashed lines demarcate the

90% error bands.
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Figure 3. Impact of a positive liquidity premium shock: An illustration of

the key economic mechanism. The production line represents equation (19)

and the labor-market line represents equation (23). The asset-pricing and

liquidity-constraint curves plot equations (17) and (24).
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for the simple general equilibrium model without capital, where p is the house

price, b is the liquidity premium, rh is the house rent, a∗ is the cutoff produc-

tivity level, Y is aggregate output, and N is labor hours.
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Figure 5. Impulse responses of key financial and real variables to a one-

standard-deviation housing demand shock. The asterisk lines represent the

estimated results and the dashed lines demarcate the 90% error bands.
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Figure 6. Impulse responses of key financial and real variables to a one-

standard-deviation labor supply shock. The asterisk lines represent the esti-

mated results and the dashed lines demarcate the 90% error bands.
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Figure 7. Impulse responses of key financial and real variables to a one-

standard-deviation stationary technology shock. The asterisk lines represent

the estimated results and the dashed lines demarcate the 90% error bands.
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Figure 8. Impulse responses of key financial and real variables to a one-

standard-deviation liquidity premium shock. The asterisk lines represent the

estimated results and the dashed lines demarcate the 90% error bands.
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Figure 9. An illustration of the propagation mechanism that transmits a

positive technology shock. The asset-pricing curve represents equation (17)

and the liquidity-constraint curve represents equation (24).
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Figure 10. An illustration of the propagation mechanism that transmits a

positive liquidity premium shock. The production and labor-market curves

represent equations (46) and (49). The asset-pricing and liquidity-constraint

curves represent equations (17) and (24).
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Appendix A. Proofs of Propositions 1-3

We conjecture that the value function takes the form Vt (hit, a
i
t) = vt (ait)h

i
t, where vt (ait)

satisfies (13). Using the Bellman equation (12), we can rewrite the incentive constraint (9)

as follows

dit + βEt
Λt+1

Λt

Vt+1(h
i
t+1, a

i
t+1) ≥ aitAtn

i
t + (rht + pat )h

i
t.

Given the conjectured value function and equations (8), (10), and (13), we can rewrite this

constraint as

aitAtn
i
t − wtnit + rhth

i
t + pth

i
t ≥ aitAtn

i
t + (rht + pat )h

i
t.

Simplifying the proceeding inequality yields the constraint (14).

Substituting the conjectured value function into the Bellman equation (12) yields

vt
(
ait
)
hit = max

nit,h
i
t+1

aitAtn
i
t − wtnit + rhth

i
t − pt

(
hit+1 − hit

)
+ pth

i
t+1.

Simplifying yields

vt
(
ait
)
hit = max

nit

(
aitAt − wt

)
nit + rhth

i
t + pth

i
t.

When ait ≥ a∗t = wt/At, the credit constraint (14) binds. Thus the preceding equation implies

that

vt
(
ait
)

=

{
(aitAt − wt) bt

wt
+ rht + pt if ait ≥ a∗t

rht + pt otherwise
. (A1)

We also obtain the optimal labor choice in (15). Finally, we substitute (A1) into (13) and

obtain (16). Using (11) and bt = pt − pat , we obtain (17).

By equations (5), (16), and (17), we can derive that

πt
Λt

= βEtbt+1
Λt+1

Λt

∫
a∗t+1

a− a∗t+1

a∗t+1

f(a)da.

If bt > 0 for all t, then πt > 0. It follows from the complementary slackness condition

πthot+1 = 0 that the household will not possess housing units, i.e., hot+1 = 0 whenever bt > 0

for all t.

Appendix B. Equilibrium System for the Medium-Scale Model

The representative household chooses consumption, labor supply, investment, capital, and

capacity utilization in order to maximize (36). The first-order conditions are given by

Λt =
Θt

Ct − γCt−1
− βγEt

Θt+1

Ct+1 − γCt
, (A2)

rht =
Θtξt
Λt

, (A3)

Λtwt = ΘtψtN
ν
t , (A4)



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 39

1

Zt
= Qkt

[
1− Ω

2

(
It
It−1
− ḡI

)2

− Ω

(
It
It−1
− ḡI

)
It
It−1

]

+βEt
Λt+1

Λt

Qkt+1Ω

(
It+1

It
− ḡI

)
I2t+1

I2t
, (A5)

Qkt = βEt
Λt+1

Λt

(ut+1rkt+1 + (1− δ)Qkt+1), (A6)

rkt = δ′(ut)Qkt, (A7)

1

Rft

= βEt
Λt+1

Λt

. (A8)

These equations admit the usual interpretations. Note that we have imposed the market

clearing condition Ht = 1 in (A3).

The first-order conditions for the intermediate goods producers are given by

αPXt(j)AtKt (j)α−1Nt (j)1−α = rkt, (A9)

and

(1− α)PXt(j)AtKt (j)αNt (j)−α = wt. (A10)

Now we compute that

Et
βΛt+1

Λt

V a
t+1

(
hit
)

= Et
βΛt+1

Λt

rht+1h
i
t + Et

βΛt+2

Λt

rht+2h
i
t + ...

= path
i
t,

where pat satisfies the recursive equation

pat = βEt
Λt+1

Λt

[
rht+1 + pat+1

]
. (A11)

We write firm i’s decision problem by dynamic programming

Vt(h
i
t, a

i
t) = max

xit(j),h
i
t+1≥0

dit + βEt
Λt+1

Λt

Vt+1(h
i
t+1, a

i
t+1), (A12)

subject to (43) and (44).

To solve the entrepreneur’s decision problem, we first derive the unit cost of production.

Define the total cost of producing yit as

Φ(yit, a
i
t) ≡ min

xit(j)

∫
PXt(j)x

i
t(j)dj, (A13)

subject to ait exp
(∫

log xit(j)dj
)
≥ yit. Cost-minimization implies that

Φ(yit, a
i
t) = yit

a∗t
ait
, (A14)

where the term a∗t is given by

a∗t ≡ exp

[∫
logPXt(j)dj

]
, (A15)
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and the demand for each xit(j) satisfies

PXt(j)x
i
t(j) = a∗t exp

(∫
log xit(j)dj

)
. (A16)

Using the cost function in (A14), we can rewrite entrepreneur i’s budget constraint as

dit + pt(h
i
t+1 − hit) ≤ yit − yit

a∗t
ait

+ rhth
i
t. (A17)

Conjecture that

Vt
(
hit, a

i
t

)
= vt

(
ait
)
hit,

where vt (ait) satisfies

βEt
Λt+1

Λt

vt+1(a
i
t+1) = pt. (A18)

We can also rewrite the credit constraint (44) as

yit
a∗t
ait
≤ bth

i
t, (A19)

where bt = pt − pat represents a liquidity premium.

Substituting the preceding conjecture and (A17) into the Bellman equation (A12), we

obtain

vt
(
ait
)
hit = max

yit

yit

(
1− a∗t

ait

)
+ rhth

i
t − pt(hit+1 − hit) + pth

i
t+1,

subject to (A19). We then obtain the optimal output choice

yit =

{
ait
a∗t
bth

i
t if ait ≥ a∗t

0 otherwise
. (A20)

Substituting this decision rule back into the Bellman equation and matching coefficients, we

obtain

vt
(
ait
)

=

{ (
ait
a∗t
− 1
)
bt + rht + pt if ait ≥ a∗t

rht + pt otherwise
.

Substituting this expression into (A18) we obtain

pt = βEt
Λt+1

Λt

[
rht+1 + pt+1 + bt+1

∫
a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]
. (A21)

By (A11) and (A21),

bt = βEt
Λt+1

Λt

bt+1

[
1 +

∫
a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]
. (A22)

The usual transversality conditions hold.

Equation (A15) implies

a∗t = PXt. (A23)
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We hence have

αPXt
Xt

utKt

= rkt, (A24)

(1− α)PXt
Xt

Nt

= wt, (A25)

and the resource constraint:

Ct +
It
Zt

= Yt. (A26)

By the market-clearing conditions and (A20), aggregate output is given by

Yt =

∫
yitdi =

∫
ait≥a∗t

ait
a∗t
bth

i
tdi =

bt
a∗t

∫ ∞
a∗t

af(a)da. (A27)

By the market-clearing conditions, (42), (A16), and (44), the total production cost is given

by

PXtXt =

∫
PXtx

i
t(j)didj =

∫
ait≥a∗t

a∗t
ait
yitdi = bt [1− F (a∗t )] . (A28)

Using the fact that PXt = a∗t and Xt = At (utKt)
αN1−α

t , we can derive that

bt =
a∗tAt (utKt)

αN1−α
t

1− F (a∗t )
. (A29)

Using this equation, we can rewrite aggregate output in (A27) as

Yt = At (utKt)
αN1−α

t

∫∞
a∗t
af(a)da

1− F (a∗t )
, (A30)

where the last expectation is taken with respect to the density f and gives the endogenously

determined TFP.

By (A24) and (A25),

rktutKt = αAta
∗
t (utKt)

αN1−α
t =

αYt
1

1−F (a∗t )

∫∞
a∗t

a
a∗t
f(a)da

, (A31)

and

wtNt = (1− α)Ata
∗
t (utKt)

αN1−α
t =

(1− α)Yt
1

1−F (a∗t )

∫∞
a∗t

a
a∗t
f(a)da

. (A32)

Define

µt + 1 ≡ 1

1− F (a∗t )

∫ ∞
a∗t

a

a∗t
f(a)da > 1.

A competitive equilibrium consists of 15 stochastic processes for {Kt} , {Λt} , {Nt} , {It} ,
{Qkt} , {ut} , {pt} , {bt} , {Ct} , {a∗t} , {Yt} , {rkt} , {rht} , {Rft} , and {wt} such that a system

of 15 equations hold: (40), (A2)-(A8), (A21), (A22), (A26), (A27), (A30), (A31), and (A32).

Note that equation (A15) is implied by equations (A30), (A31), and (A32). The usual

transversality conditions also hold.
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Appendix C. Stationary Equilibrium

We make the following transformations of the variables:

C̃t ≡
Ct
Γt
, Ĩt ≡

It
ZtΓt

, Ỹt ≡
Yt
Γt
, K̃t ≡

Kt

Γt−1Zt−1
,

w̃t ≡
wt
Γt
, r̃ht ≡

rht
Γt
, p̃t ≡

pt
Γt
, b̃t ≡

bt
Γt
,

r̃kt ≡ rktZt, Q̃kt ≡ QktZt, Λ̃t ≡
Λt

Θt

Γt,

where Γt = Z
α

1−α
t A

1
1−α
t . The other variables are stationary and there is no need to scale them.

Let Gzt = Zt
Zt−1

and Gat = At
At−1

. Then

logGzt = log gzt + log gνz,t,

logGat = log gat + log gνa,t,

where

log gνz,t = log νz,t − log νz,t−1,

log gνa,t = log νa,t − log νa,t−1.

Denoting the gross growth rate of Γt by gγt ≡ Γt/Γt−1, we have

log gγt =
α

1− α
logGzt +

1

1− α
logGat.

Denoting the non-stochastic steady-state of gγt by gγ, we have

log gγ ≡
α

1− α
log gz +

1

1− α
log ga. (A33)

On the nonstochastic balanced growth path, investment and capital grow at the rate of

gI ≡ gγgz; consumption, output, wages, and the liquidity premium grow at the rate of gγ;

and the house rent, the rental rate of capital, Tobin’s marginal Q, and the relative price of

investment goods decrease at the rate gz. We now display the equilibrium system for the

stationary variables.

(1) Marginal utility of consumption,

Λ̃t =
1

C̃t − γC̃t−1/gγt
− βγEtθt+1

1

C̃t+1gγt+1 − γC̃t
. (A34)

(2) Labor supply,

Λ̃tw̃t = ψtN
ν
t . (A35)

(3) Rent of house,

r̃ht =
ξt
Λ̃t

. (A36)
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(4) Investment,

1 = Q̃kt

1− Ω

2

(
Ĩt

Ĩt−1
Gztgγt − gI

)2

− Ω

(
Ĩt

Ĩt−1
Gztgγt − gI

)
Ĩt

Ĩt−1
Gztgγt


+βEtθt+1

Λ̃t+1

Λ̃t

Q̃kt+1Ω

(
Ĩt+1

Ĩt
gγt+1Gzt+1 − gI

)
Ĩ2t+1

Ĩ2t
gγt+1Gzt+1. (A37)

(5) Marginal Tobin’s Qk,

Q̃kt = βEtθt+1
Λ̃t+1

Λ̃t

1

gγt+1Gzt+1

[ut+1r̃kt+1 + (1− δ(ut+1))Q̃kt+1]. (A38)

(6) Capital utilization,

r̃kt = δ′(ut)Q̃kt. (A39)

(7) Liquidity premium,

b̃t = βEt
Λ̃t+1

Λ̃t

θt+1b̃t+1

[
1 +

∫
a∗t+1

(
a

a∗t+1

− 1)f(a)da

]
. (A40)

(8) House price,

p̃t = βEt
Λ̃t+1

Λ̃t

θt+1

[
r̃ht+1 + p̃t+1 + b̃t+1

∫
a∗t+1

(
a

a∗t+1

− 1)f(a)da

]
. (A41)

(9) Rental rate of capital,

r̃ktutK̃t =
αGztgγtỸt

1
1−F (a∗t )

∫∞
a∗t

a
a∗t
f(a)da

. (A42)

(10) Labor demand,

w̃tNt =
(1− α)Ỹt

1
1−F (a∗t )

∫∞
a∗t

a
a∗t
f(a)da

. (A43)

(11) Aggregate output,

Ỹt =
1

(GztGat)
α

1−α

(
utK̃t

)α
N1−α
t

∫∞
a∗t
af(a)da

1− F (a∗t )
. (A44)

(12) Liquidity constraint,

b̃t
a∗t

∫ ∞
a∗t

af(a)da = Ỹt. (A45)

(13) Aggregate capital accumulation,

K̃t+1 = (1− δ(ut))
K̃t

gztgγt
+

1− Ω

2

(
Ĩt

Ĩt−1
gztgγt − gI

)2
 Ĩt. (A46)

(14) Resource constraint,

C̃t + Ĩt = Ỹt. (A47)
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(15) Risk-free rate,

1 = βRftEt

[
Λ̃t+1θt+1

Λ̃t

1

gγ,t+1

]
. (A48)

Appendix D. Log-Linearized System

We log-linearize the stationary model given in the preceding appendix around the deter-

ministic steady state.

(1) Marginal utility of consumption,

Λ̂t (gγ − βγ) (gγ − γ) =
[
−g2γĈt + γgγ

(
Ĉt−1 − ĝγt

)]
− βγEt

[
−gγ

(
Ĉt+1 + ĝγt+1

)
+ γĈt + θ̂t+1(gγ − γ)

]
. (A49)

(2) Labor supply,

Λ̂t + ŵt = ψ̂t + νN̂t. (A50)

(3) House rent,

r̂ht = −Λ̂t + ξ̂t. (A51)

(4) Investment,

0 = Q̂kt − Ω (gzgγ)
2
[
Ît − Ît−1 + ĝzt + ĝvzt + ĝγt

]
+ βΩ (gzgγ)

2Et

(
Ît+1 − Ît + ĝzt+1 + ĝγt+1 + ĝvzt+1

)
. (A52)

(5) Marginal Tobin’s Qk,

Q̂kt + Λ̂t = Et

[
θ̂t+1 + Λ̂t+1 − ĝγt+1 − ĝzt+1 − ĝvzt+1

]
+(1− β(1− δ))Et (ût+1 + r̂kt+1)

+β(1− δ)Et
[
Q̂kt+1 −

δ′(1)

1− δ
ût+1

]
. (A53)

(6) Capital utilization,

r̂kt =
δ′′(1)

δ′(1)
ût + Q̂kt. (A54)

(7) Liquidity premium,

b̂t + Λ̂t = Et(θ̂t+1 + Λ̂t+1 + bt+1)− [1− β]
1 + µ

µ
Etâ

∗
t+1. (A55)
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(8) House price,

p̂t + Λ̂t = Et

(
θ̂t+1 + Λ̂t+1

)
+
β(r̃h/Ỹ )

p̃/Ỹ
Etr̂ht+1 + βEtp̂t+1+

(1− β)(b̃/Ỹ )

p̃/Ỹ
Et

[
b̂t+1 −

1 + µ

µ
â∗t+1

]
.

(9) Rental rate of capital,

r̂kt + ût + K̂t = Ŷt + ĝzt + ĝγt + ĝvzt +

[
1− ηµ

1 + µ

]
â∗t . (A56)

(10) Labor demand,

ŵt + N̂t = Ŷt +

(
1− ηµ

1 + µ

)
â∗t . (A57)

(11) Aggregate output,

Ŷt = α(ût + K̂t) + (1− α)N̂t +
ηµ

1 + µ
â∗t −

α

1− α
(ĝzt + ĝvzt + ĝat + ĝvat) . (A58)

(12) Liquidity constraint,

b̂t −
1 + η + µ

1 + µ
â∗t = Ŷt. (A59)

(13) Aggregate capital accumulation,

K̂t+1 =
(1− δ)
gzgγ

K̂t +

(
1− 1− δ

gzgγ

)
Ît −

δ′(1)

gzgγ
ût − (1− δ)

[
ĝzt + ĝvzt
gzgγ

+
ĝγt
gzgγ

]
. (A60)

(14) Resource constraint,

C̃

Ỹ
Ĉt +

Ĩ

Ỹ
Ît = Ŷt. (A61)

(15) Risk-free rate,

Λ̂t = R̂ft + Et(Λ̂t+1 + θ̂t+1 − ĝγt+1). (A62)

We have 7 shocks.

(1) Permanent IST shock,

ĝzt = ρzĝzt−1 + σzεzt. (A63)

(2) Temporary IST shock,

ν̂z,t = ρvz ν̂z,t−1 + σvzεvz,t . (A64)

(3) Permanent technology shock,

ĝat = ρaĝat−1 + σaεat. (A65)

(4) Temporary technology shock,

ν̂a,t = ρva ν̂a,t−1 + σvaεva,t . (A66)
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(5) Liquidity premium shock,

θ̂t = ρθθ̂t−1 + σθεθt. (A67)

(6) Housing demand shock,

ξ̂t = ρξ ξ̂t−1 + σξεξt.

(7) Labor supply shock,

ψ̂t = ρψψ̂t−1 + σψεψt. (A68)

Appendix E. Data

All the data used in this paper was constructed by Patrick Higgins at the Federal Reserve

Bank of Atlanta, some of which are collected directly from the Haver Analytics Database

(Haver for short). In this section, we describe how the data was constructed in detail.

The model estimation is based on six U.S. aggregate time series: the real price of house

(pData
t ), the real rental price of house (rData

ht ), the quality-adjusted relative price of investment

((1/Zt)
Data), real per capita consumption (CData

t ), real per capita investment (IData
t ), and per

capita total hours (HData
t ). These series are constructed as follows:

• pData
t = LiqCoreLogic87

PriceNonDurPlusServExHous
.

• rData
ht = PCERentOERPriceIndex

PriceNonDurPlusServExHous
.

• (1/Zt)
Data = GordonPriceCDplusES

PriceNonDurPlusServExHous
.

• CData
t = (NomConsNHSplusND)/PriceNonDurPlusServExHous

POPSMOOTH@USECON
.

• IData
t = (CD@USECON + FNE@USECON)/PriceNonDurPlusServExHous

POPSMOOTH@USECON
.

• HData
t = TotalHours

POPSMOOTH@USECON
.

Sources for the constructed data, along with the Haver keys (all capitalized letters) to the

data, are described below.

LiqCoreLogic87: Liquidity-adjusted price index for housing. To construct this series,

we first obtain Haver’s seasonally adjusted CoreLogic home price index (USLPH-

PIS@USECON) from 1987Q1 to 2013Q4. We then adjust this home price index

using the method of Quart and Quigley (1989, 1991) to take into account time-on-

market uncertainty. The CoreLogic home price index series provided by the Core

Logic Databases is similar to the Case-Shiller home price index but covers far more

counties than the Case-Shiller series.

PCERentOERPriceIndex: Rental price index for housing. Constructed by using the

Fisher chain-weighted aggregate of PCE OER [JCSRD USNA] and PCE tenant rent

[JCSHT USNAqtr] price indices. Average of 2005 prices = 100. Haver Description for

PCE OER [JCSRD USNA] is “PCE: Imputed Rental of Owner-Occupied Nonfarm

Housing Price Index (SA, 2005=100).” The key JCSHT USNAqtr represents the

PCE-based measure of home rental prices reported by Haver as JCSHT@USNA and
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described by Haver as “rental of tenant-occupied non-farm housing.” This series is

revised over time and is probably less subject to breaks due to improved methodology.

It may still have a substantial break in 1977 and a smaller break in 1985 due to “non-

response bias” (Crone, Nakamura, and Voith, 2010). Our sample starts in 1987Q1,

so this potential problem is avoided.

PriceNonDurPlusServExHous: Consumer price index. Price deflator of non-durable

consumption and non-housing services, constructed by Tornqvist aggregation of price

deflator of non-durable consumption and non-housing related services (2009=100).

GordonPriceCDplusES: Price of investment goods. Quality-adjusted price index for

consumer durable goods, equipment investment, and software investment. This is a

weighted index from a number of individual price series within this category. For each

individual price series from 1947 to 1983, we use Gordon (1990)’s quality-adjusted

price index. Following Cummins and Violante (2002), we estimate an econometric

model of Gordon’s price series as a function of time trend and several macroeconomic

indicators in the National Income and Product Account (NIPA), including the current

and lagged values of the corresponding NIPA price series; the estimated coefficients

are then used to extrapolate the quality-adjusted price index for each individual price

series for the sample from 1984 to 2008. These constructed price series are annual. We

use Denton (1971)’s method to interpolate these annual series at quarterly frequency.

We then use the Tornqvist procedure to construct the quality-adjusted price index

from the interpolated individual quarterly price series.

NomConsNHSplusND: Nominal personal consumption expenditures. Nominal non-

durable goods and non-housing services (SAAR, billion of dollars). It is computed

as

CN@USECON + CS@USECON - CSRU@USECON.

POPSMOOTH@USECON: Population. Smoothed civilian noninstitutional popu-

lation with ages 16 years and over (thousands). This series is smoothed by eliminating

breaks in population from 10-year censuses and post-2000 American Community Sur-

veys using the “error of closure” method. This fairly simple method is used by the

Census Bureau to get a smooth monthly population series and reduce the unusual

influence of drastic demographic changes.16

CD@USECON: Consumer durable goods expenditures. Nominal personal consump-

tion expenditures: durable goods (SAAR, billion of dollars).

FNE@USECON: Equipment and software expenditures. Nominal private nonresi-

dential investment: equipment & software (SAAR, billion of dollars).

16The detailed explanation can be found at http://www.census.gov/popest/archives/

methodology/intercensal\_nat\_meth.html.
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TotalHours: Total hours in the non-farm business sector.

Appendix F. Estimation Procedure

We apply the Bayesian methodology to the estimation of the log-linearized medium-scale

structural model, using our own C/C++ code. The advantage of using our own code instead

of using Dynare is the flexibility and accuracy we have for finding the posterior mode. We

generate over a half million draws from the prior as a starting point for our optimization

routine and select the estimated parameters that give the highest posterior density. The

optimization routine is a combination of NPSOL software package and the csminwel routine

provided by Christopher A. Sims.

In estimation, we use the log-linearized equilibrium conditions, reported in Appendix D, to

form the likelihood function fit to the six quarterly U.S. time series from 1987Q1 to 2013Q4:

the house price, the house rent, the quality-adjusted relative price of investment, real per

capita consumption, real per capita investment (in consumption units), and per capita hours

worked. The data for the estimated sample begins with 1987Q1 for two reasons. First, the

Case-Shiller house price time series begins in 1987. Second, the CoreLogic house price time

series is similar to the Case–Shiller house price series, but covers far more counties than the

Case-Shiller series. The CoreLogic house price series collected for the period before 1987

it does not have as much coverage as the series collected for the after-1986 period. The

Case-Shiller house price time series exists only for the period after 1986, which we use to

verify the quality of the CoreLogic house price series.

We fix the values of certain parameters as an effective way to sharpen the identification

of other key parameters in the model. The capital share α is set at 0.33, consistent with the

average labor income share of capital input. The growth rate of aggregate investment-specific

technology, gz = 1.013, is consistent with the average growth rate of the inverse relative price

of investment goods. The growth rate of aggregate output, gγ = 1.0035, is consistent with

the average common growth rate of consumption and investment. The interest rate Rf is set

at 1.01. The steady state capacity utilization u is set at 1. The steady-state labor supply as

a fraction of the total time is normalized at N = 0.3. To solve the steady state, we impose

three additional restrictions to be consistent with the data: 1) the capital-output ratio is

1.15 at annual frequency; 2) the investment-capital ratio is 0.2 at annual frequency; and 3)

the rental-income-to-output ratio is 0.1.17

17Rental income of house is housing rental income of persons with capital consumption adjustment (SAAR,

million dollars) from Table 7.4.5 in the National Income and Product Accounts. The output data used for our

model is a sum of personal consumption expenditures and private domestic investment. Consumption is the

private expenditures on nondurable goods and nonhousing services. Investment is the private expenditures

on consumer durable goods and fixed investment in equipment and software. Accordingly, we measure capital

stock using the annual stocks of equipment, software, and consumer durable goods.
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We estimate five structural parameters as well as all the persistence and volatility pa-

rameters that govern exogenous shock processes. The five structural parameters are the

inverse Frisch elasticity of labor supply ν, the hazard rate η, the elasticity of capacity uti-

lization δ′′(1)/δ′(1), the habit formation γ, and the investment-adjustment cost Ω. The

remaining parameters are then obtained from the steady state relationships that satisfy

the aforementioned data restrictions. These parameters are: the capital depreciation rate

(δ = 0.0404), the subjective discount factor (β = 0.9936), the parameter related to cutoff

productivity (µ = 0.1482), the capacity utilization rate (δ′(1) = 0.0635), the housing demand

(ξ̄ = 0.1348), and the labor disutility (ψ̄ = 8.9843).

For the estimated parameters, we specify a prior that is agnostic enough to cover a wide

range of values that are economically plausible (Table 5). The prior for ν, η, δ′′(1)/δ′(1),

and Ω has a gamma distribution with the shape hyperparameter a = 1 and the rate hyper-

parameter b = 0.5. These hyperparameters allow a positive probability density at the zero

value and the implied 90% prior probability bounds are from 0.1 to 6. The prior for γ has

a beta distribution with the hyperparameters taking the values of 1 and 2. This particular

specification allows a positive probability of no habit formation and at the same time permits

a wide range of values considered in the literature (Boldrin, Christiano, and Fisher, 2001).

The prior for the persistence parameters of exogenous shock processes follows the beta

distribution with the 90% probability interval between 0.026 and 0.776. The prior for the

standard deviations of shock processes follows the inverse gamma distribution with the 90%

probability interval between 0.0001 and 2. All these prior specifications are far more diffuse

than those used in the literature.
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Table 5. Prior distributions of structural and shock parameters

Parameter Distribution a b Low High

ν Gamma(a,b) 1.0 3.0 0.017 1.000

η Gamma(a,b) 1.0 0.5 0.100 6.000

δ′′/δ′ Gamma(a,b) 1.0 0.5 0.100 6.000

γ Beta(a,b) 1.0 2.0 0.026 0.776

Ω Gamma(a,b) 1.0 0.5 0.100 6.000

ρz Beta(a,b) 1.0 2.0 0.026 0.776

ρνz Beta(a,b) 1.0 2.0 0.026 0.776

ρa Beta(a,b) 1.0 2.0 0.026 0.776

ρνa Beta(a,b) 1.0 2.0 0.026 0.776

ρθ Beta(a,b) 1.0 2.0 0.026 0.776

ρξ Beta(a,b) 1.0 2.0 0.026 0.776

ρψ Beta(a,b) 1.0 2.0 0.026 0.776

σz Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σνz Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σa Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σνa Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σθ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σξ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σψ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

Note: “Low” and “high” denote the bounds of the 90% probability interval for each

parameter.



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 51

References

Aguiar, M., and G. Gopinath (2007): “Emerging Market Business Cycles: The Cycle Is

the Trend,” Journal of Political Economy, 115(1), 69–102.

Albuquerque, R., M. Eichenbaum, and S. Rebelo (2012): “Valuation Risk and Asset

Pricing,” Unpublished Working Paper, Northwestern University.

Albuquerque, R., and H. A. Hopenhayn (2004): “Optimal Lending Contracts and

Firm Dynamics,” Review of Economic Studies, 71, 285–315.

Alvarez, F., and U. J. Jermann (2000): “Efficiency, Equilibrium, and Asset Pricing

with Risk of Default,” Econometrica, 68, 775–798.

Amaral, P. S., and E. Quintin (2010): “Limited Enforcement, Financial Intermedia-

tion, and Economic Development: A Quantitative Assessment,” International Economic

Review, 51(3), 785–811.

Boldrin, M., L. J. Christiano, and J. D. Fisher (2001): “Habit Persistence, Asset

Returns, and the Business Cycle,” American Economic Review, 91(1), 149–166.

Buera, F. J., J. P. Kaboski, and Y. Shin (2011): “Finance and Development: A Tale

of Two Sectors,” American Economic Review, 101, 1964–2002.

Buera, F. J., and B. Moll (2013): “Aggregate Implications of a Credit Crunch,” Un-

published Manuscript, UCLA and Princeton University.

Buera, F. J., and Y. Shin (2013): “Financial Frictions and the Persistence of History,”

Journal of Political Economy, 121(2), 221–272.

Burnside, C., M. Eichenbaum, and S. Rebelo (2011): “Understanding Booms and

Busts in Housing Markets,” Unpublished Manuscript, Duke University and Northwestern

University.

Campbell, S. D., M. A. Davis, J. Gallin, and R. F. Martin (2009): “What Moves

Housing Markets: A Variance Decomposition of the Rent-Price Ratio,” Journal of Urba,

66(2), 90–102.

Caplin, A., and J. Leahy (2011): “Trading Frictions and House Price Dynamics,” Journal

of Money, Credit, and Banking, 43, 283–303.

Christiano, L. J., M. S. Eichenbaum, and C. L. Evans (2005): “Nominal Rigidities

and the Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy,

113, 1–45.

Crone, T. M., L. I. Nakamura, and R. Voith (2010): “Rents Have Been Rising, Not

Falling, in the Postwar Period,” The Review of Economics and Statistics, 92(3), 628–642.

Cummins, J. G., and G. L. Violante (2002): “Investment-Specific Technical Change in

the United States (1947-2000): Measurement and Macroeconomic Consequences,” Review

of Economic Dynamics, 5, 243–284.



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 52

Denton, F. T. (1971): “Adjustment of Monthly or Quarterly Series to Annual Totals:

An Approach Based on Quadratic Minimization,” Journal of the American Statistical

Association, 66, 99–102.

Gilchrist, S., J. W. Sim, and E. Zakrajs̆ek (2013): “Misallocation and Financial

Market Frictions: Some Direct Evidence from the Dispersion in Borrowing Costs,” Review

of Economic Dynamics, 16, 159–176.

Gordon, R. J. (1990): The Measurement of Durable Goods Prices. University of Chicago

Press, Chicago,Illinois.

Greenwood, J., Z. Hercowitz, and P. Krusell (1997): “Long-Run Implications of

Investment-Specific Technological Change,” American Economic Review, 87, 342–362.

He, C., R. Wright, and Y. Zhu (2013): “Housing and Liquidity,” Unpublished Working

Paper, University of Wisconsin at Madison.

Iacoviello, M. (2005): “House Prices, Borrowing Constraints, and Monetary Policy in

the Business Cycle,” American Economic Review, 95(3), 739–764.

Iacoviello, M., and S. Neri (2010): “Housing Market Spillovers: Evidence from an

Estimated DSGE Model,” American Economic Journal: Macroeconomics, 2, 125–164.

Jaimovich, N., and S. Rebelo (2009): “Can News About the Future Drive the Business

Cycle?,” American Economic Review, 99(4), 1097–1118.

Jeong, H., and R. Townsend (2007): “Sources of TFP Growth: Occupational Choice

and Financial Deepening,” Economic Theory, 32(1), 179–221, Springer.

Jermann, U., and V. Quadrini (2007): “Stock Market Boom and the Productivity Gains

of the 1990s,” Journal of Monetary Economics, 54(2), 413–432.

(2012): “Macroeconomic Effects of Financial Shocks,” American Economic Review,

102(1), 238–271.

Justiniano, A., and G. E. Primiceri (2008): “The Time Varying Volatility of Macroe-

conomic Fluctuations,” American Economic Review, 98(3), 604–641.

Keane, M. P., and R. Rogerson (2011): “Reconciling Micro and Macro Labor Supply

Elasticities: A Structural Perspective,” NBER Working Paper No. 17430.

Kehoe, T. J., and D. K. Levine (1993): “Debt-Constrained Asset Markets,” Review of

Econmic Studies, 60, 865–888.

Kehrig, M. (2011): “The Cyclicality of Productivity Dispersion,” University of Texas at

Austin.

Kiyotaki, N., and J. Moore (1997): “Credit Cycles,” Journal of Political Economy,

105(2), 211–248.
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